喵ID:mhotau免责声明

On linear systems and <em>τ</em> functions associated with Lamé's equation and Painlevé's equation VI

基本信息

DOI:
10.1016/j.jmaa.2010.10.052
发表时间:
2011-04-01
期刊:
Research article
影响因子:
--
通讯作者:
Gordon Blower
中科院分区:
文献类型:
regular articles
作者: Gordon Blower研究方向: -- MeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

Painlevé's transcendental differential equation may be expressed as the consistency condition for a pair of linear differential equations with matrix coefficients with rational entries. By a construction due to Tracy and Widom, this linear system is associated with certain kernels which give trace class operators on Hilbert space. This paper expresses such operators in terms of Hankel operators of linear systems which are realised in terms of the Laurent coefficients of the solutions of the differential equations. Let be the orthogonal projection; then the Fredholm determinant defines the function, which is here expressed in terms of the solution of a matrix Gelfand–Levitan equation. For suitable values of the parameters, solutions of the hypergeometric equation give a linear system with similar properties. For meromorphic transfer functions that have poles on an arithmetic progression, the corresponding Hankel operator has a simple form with respect to an exponential basis in ; so can be expressed as a series of finite determinants. This applies to elliptic functions of the second kind, such as satisfy Lamé's equation with .
潘勒韦超越微分方程可表述为一对具有有理项矩阵系数的线性微分方程的相容性条件。通过特雷西和威多姆提出的一种构造,该线性系统与某些核相关联,这些核在希尔伯特空间上给出迹类算子。本文根据线性系统的汉克尔算子来表示此类算子,这些线性系统是通过微分方程解的洛朗系数实现的。设\(P\)为正交投影;那么弗雷德霍姆行列式\(\det(I - zP KP)\)定义了\(\tau\)函数,在此它根据一个矩阵盖尔范德 - 列维坦方程的解来表示。对于参数的适当取值,超几何方程的解给出一个具有类似性质的线性系统。对于在算术级数上有极点的亚纯传递函数\(K\),相应的汉克尔算子相对于\(L^{2}(0, \infty)\)中的一个指数基具有简单形式;因此\(\det(I - zP KP)\)可表示为一系列有限行列式。这适用于第二类椭圆函数,例如满足\(n = 1\)时的拉梅方程的函数。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Gordon Blower
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓