喵ID:m763CS免责声明

生物特征识别学科发展报告

基本信息

DOI:
10.11834/jig.210078
发表时间:
2021
期刊:
中国图象图形学报
影响因子:
--
通讯作者:
何勇
中科院分区:
其他
文献类型:
--
作者: 孙哲南;赫然;王亮;阚美娜;冯建江;郑方;郑伟诗;左旺孟;康文雄;邓伟洪;张杰;韩琥;山世光;王云龙;茹一伟;朱宇豪;刘云帆;何勇研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

From mobile phone unlocking and community access control to dining in restaurants, supermarket cashiering, high-speed rail station entry, airport security checks and hospital visits, biological characteristics such as face, iris and fingerprint have become the digital identity cards for people to enter the Internet of Everything world. Biometric recognition endows machines with advanced intelligence to automatically detect, capture, process, analyze and recognize digital physiological or behavioral signals. It is a typical and complex pattern recognition problem and has always been at the forefront of the development of artificial intelligence technology, occupying an important position in national strategies such as the new generation of artificial intelligence planning and the "Internet +" action plan. Due to the issues of privacy, ethics and law that are of vital concern to the public involved in biometric recognition, it has also attracted extensive social attention recently. This article systematically reviews the current development status, emerging directions, existing problems and feasible ideas of the biometric recognition discipline, and thoroughly combs the research progress of face, iris, fingerprint, palm print, vein, voiceprint, gait, person re-identification and multimodal fusion recognition. Taking the face as an example, it focuses on introducing the new directions that have received attention in the field of biometric recognition in recent years - adversarial attacks and defenses, deep fakes and anti-fakes. Finally, it analyzes and summarizes the three major challenging problems existing in the field of biometric recognition - "perception blind area", "decision-making误区" and "safety red zone". This article believes that it is necessary to transform and innovate the sensing, cognitive and security mechanisms of biological characteristics in order to possibly achieve fundamental breakthroughs in academic research and technical applications of biometric recognition in complex scenarios, break through the drawbacks of existing biometric recognition technologies, and develop towards the overall goal of the new generation of biometric recognition of being "sensible", "knowable" and "trustworthy".
从手机解锁、小区门禁到餐厅吃饭、超市收银,再到高铁进站、机场安检以及医院看病,人脸、虹膜和指纹等生物特征已成为人们进入万物互联世界的数字身份证。生物特征识别赋予机器自动探测、捕获、处理、分析和识别数字化生理或行为信号的高级智能,是一个典型而又复杂的模式识别问题,一直处于人工智能技术发展前沿,在新一代人工智能规划、“互联网+”行动计划等国家战略中具有重要地位。由于生物特征识别涉及公众利益攸关的隐私、道德和法律等问题,近期也引起了广泛的社会关注。本文系统综述了生物特征识别学科发展现状、新兴方向、存在问题和可行思路,深入梳理了人脸、虹膜、指纹、掌纹、静脉、声纹、步态、行人重识别以及多模态融合识别的研究进展,以人脸为例重点介绍了生物特征识别领域近些年受到关注的新方向———对抗攻击和防御、深度伪造和反伪造,最后剖析总结了生物特征识别领域存在的3大挑战问题———“感知盲区”、“决策误区”和“安全红区”。本文认为必须变革和创新生物特征的传感、认知和安全机制,才有可能取得复杂场景生物识别学术研究和技术应用的根本性突破,破除现有生物识别技术的弊端,朝着“可感”、“可知”和“可信”的新一代生物特征识别总体目标发展。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

基于面部多模态生物特征信息融合的精准身份识别方法
批准号:
U1836217
批准年份:
2018
资助金额:
252.0
项目类别:
联合基金项目
何勇
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓