Soft machines typically exhibit slow locomotion speed and low manipulation strength because of intrinsic limitations of soft materials. Here, we present a generic design principle that harnesses mechanical instability for a variety of spine-inspired fast and strong soft machines. Unlike most current soft robots that are designed as inherently and unimodally stable, our design leverages tunable snap-through bistability to fully explore the ability of soft robots to rapidly store and release energy within tens of milliseconds. We demonstrate this generic design principle with three high-performance soft machines: High-speed cheetah-like galloping crawlers with locomotion speeds of 2.68 body length/s, high-speed underwater swimmers (0.78 body length/s), and tunable low-to-high-force soft grippers with over 1 to 10(3 )stiffness modulation (maximum load capacity is 11.4 kg). Our study establishes a new generic design paradigm of next-generation high-performance soft robots that are applicable for multifunctionality, different actuation methods, and materials at multiscales.
由于软材料的固有局限性,软体机器通常表现出缓慢的运动速度和较低的操作强度。在此,我们提出了一种通用设计原理,该原理利用机械不稳定性来设计各种受脊柱启发的快速且强大的软体机器。与大多数目前设计为固有且单模态稳定的软体机器人不同,我们的设计利用可调节的双稳态突跳来充分挖掘软体机器人在几十毫秒内快速储存和释放能量的能力。我们通过三种高性能软体机器展示了这一通用设计原理:运动速度为2.68倍体长/秒的类似猎豹高速奔跑的爬行器、高速水下游泳者(0.78倍体长/秒)以及具有超过1到10³刚度调节(最大负载能力为11.4千克)的可调节低力到高力的软体夹具。我们的研究建立了下一代高性能软体机器人的一种新的通用设计范式,该范式适用于多功能性、不同的驱动方法以及多尺度的材料。