喵ID:lnt2cP免责声明

Characterization of the diffusion signal of breast tissues using multi-exponential models.

基本信息

DOI:
10.1002/mrm.29090
发表时间:
2022-04
影响因子:
3.3
通讯作者:
Dale, Anders M.
中科院分区:
医学3区
文献类型:
Journal Article
作者: Rodriguez-Soto, Ana E.;Andreassen, Maren M. Sjaastad;Fang, Lauren K.;Conlin, Christopher C.;Park, Helen H.;Ahn, Grace S.;Bartsch, Hauke;Kuperman, Joshua;Vidic, Igor;Ojeda-Fournier, Haydee;Wallace, Anne M.;Hahn, Michael;Seibert, Tyler M.;Jerome, Neil Peter;Ostlie, Agnes;Bathen, Tone Frost;Goa, Pal Erik;Rakow-Penner, Rebecca;Dale, Anders M.研究方向: Radiology, Nuclear Medicine & Medical ImagingMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

Restriction spectrum imaging (RSI) decomposes the diffusion-weighted (DW) MRI signal into separate diffusion components of known apparent diffusion coefficients (ADCs). The number of diffusion components and optimal ADCs for RSI are organ-specific and determined empirically. The purpose of this work was to determine the RSI model for breast tissues. The DW-MRI signal was described using a linear combination of multiple exponential components. A set of ADC values was estimated to fit voxel in cancer and control regions of interest (ROIs). Later, the signal contributions of each diffusion component were estimated using these fixed ADC values. Relative fitting residual and Bayesian information criterion (BIC) were assessed. Contrast-to-noise ratio (CNR) between cancer and fibroglandular tissue in RSI-derived signal contribution maps was compared to dynamic contrast enhanced (DCE) imaging. A total of 74 women with breast cancer were scanned at 3.0T MRI. The fitting residuals of conventional ADC and BIC suggest that a three-component model improves the characterization of the diffusion signal over a bi-exponential model. Estimated ADCs of tri-exponential model were D1,3=0, D2,3=1.5×10−3 and D3,3=10.8×10−3 mm2/s. The RSI-derived signal contributions of the slower diffusion components were larger in tumors than in fibroglandular tissues. Further, the CNR and specificity at 80% sensitivity of DCE and a subset of RSI-derived maps were equivalent. Breast DW-MRI signal was best described using a tri-exponential model. Tumor conspicuity in breast RSI model is comparable to that of DCE without the use of exogenous contrast. These data may be used as differential features between healthy and malignant breast tissues.
限制频谱成像(RSI)将扩散加权(DW)磁共振成像信号分解为已知表观扩散系数(ADC)的独立扩散成分。RSI的扩散成分数量和最佳ADC因器官而异,并通过经验确定。本研究的目的是确定乳腺组织的RSI模型。 DW - MRI信号采用多个指数成分的线性组合来描述。估计了一组ADC值,以拟合癌症和对照感兴趣区域(ROI)中的体素。随后,使用这些固定的ADC值估计每个扩散成分的信号贡献。评估了相对拟合残差和贝叶斯信息准则(BIC)。将RSI衍生信号贡献图中癌症与纤维腺体组织之间的对比噪声比(CNR)与动态对比增强(DCE)成像进行了比较。 共有74名乳腺癌女性在3.0T磁共振成像仪上进行了扫描。常规ADC的拟合残差和BIC表明,三成分模型比双指数模型更能改善扩散信号的特征描述。三指数模型估计的ADC值为D1,3 = 0,D2,3 = 1.5×10⁻³和D3,3 = 10.8×10⁻³ mm²/s。在肿瘤中,较慢扩散成分的RSI衍生信号贡献比在纤维腺体组织中更大。此外,DCE和一部分RSI衍生图在80%灵敏度下的CNR和特异性相当。 乳腺DW - MRI信号用三指数模型描述最佳。乳腺RSI模型中肿瘤的显著程度与不使用外源性造影剂的DCE相当。这些数据可作为健康和恶性乳腺组织之间的鉴别特征。
参考文献(49)
被引文献(8)
Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition
DOI:
10.1056/nejmoa031759
发表时间:
2004-07-29
期刊:
NEW ENGLAND JOURNAL OF MEDICINE
影响因子:
158.5
作者:
Kriege, M;Brekelmans, CTM;Klijn, JGM
通讯作者:
Klijn, JGM
Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group
DOI:
10.1007/s00330-019-06510-3
发表时间:
2019-11-30
期刊:
EUROPEAN RADIOLOGY
影响因子:
5.9
作者:
Baltzer, Pascal;Mann, Ritse M.;Le Bihan, Denis
通讯作者:
Le Bihan, Denis
Noise Estimation from Averaged Diffusion Weighted Images: Can Unbiased Quantitative Decay Parameters Assist Cancer Evaluation?
DOI:
10.1002/mrm.24877
发表时间:
2014-06-01
期刊:
MAGNETIC RESONANCE IN MEDICINE
影响因子:
3.3
作者:
Dikaios, Nikolaos;Punwani, Shonit;Atkinson, David
通讯作者:
Atkinson, David
Noninvasive Quantification of Solid Tumor Microstructure Using VERDICT MRI
DOI:
10.1158/0008-5472.can-13-2511
发表时间:
2014-04-01
期刊:
CANCER RESEARCH
影响因子:
11.2
作者:
Panagiotaki, Eletheria;Walker-Samuel, Simon;Alexander, Daniel C.
通讯作者:
Alexander, Daniel C.
Improved Characterization of Diffusion in Normal and Cancerous Prostate Tissue Through Optimization of Multicompartmental Signal Models.
DOI:
10.1002/jmri.27393
发表时间:
2021-03
期刊:
Journal of magnetic resonance imaging : JMRI
影响因子:
0
作者:
Conlin CC;Feng CH;Rodriguez-Soto AE;Karunamuni RA;Kuperman JM;Holland D;Rakow-Penner R;Hahn ME;Seibert TM;Dale AM
通讯作者:
Dale AM

数据更新时间:{{ references.updateTime }}

关联基金

Improving assessment of prostate cancer bone metastases using advanced diffusion imaging
批准号:
10432040
批准年份:
2019
资助金额:
20.13
项目类别:
Dale, Anders M.
通讯地址:
St Olavs Univ Hosp, Dept Radiol & Nucl Med, Trondheim, Norway
所属机构:
St Olavs Univ HospnNorwegian University of Science & Technology (NTNU)
电子邮件地址:
rrakowpenner@health.ucsd.edu
通讯地址历史:
Univ Calif San Diego, Dept Radiol, 9400 Campus Point Dr 7316, La Jolla, CA 92093 USA
所属机构
Univ Calif San Diego
University of California System
University of California San Diego
University of California San Diego Health Sciences
University of California San Diego School of Medicine
University of California San Diego Department of Radiology
Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, NTNU, Trondheim, Norway
所属机构
Norwegian Univ Sci & Technol
Norwegian University of Science & Technology (NTNU)
Norwegian University of Science and Technology Faculty of Medicine and Health Sciences
Norwegian University of Science and Technology Department of Circulation and Medical Imaging
Univ Calif San Diego, Sch Med, La Jolla, CA 92093 USA
所属机构
Univ Calif San Diego
University of California System
University of California San Diego
University of California San Diego Health Sciences
University of California San Diego School of Medicine
Norwegian Univ Sci & Technol, Dept Phys, NTNU, Trondheim, Norway
所属机构
Norwegian Univ Sci & Technol
Norwegian University of Science & Technology (NTNU)
Norwegian University of Science and Technology Faculty of Natural Sciences
Norwegian University of Science and Technology Department of Physics
Univ Calif San Diego, Dept Radiat Oncol, La Jolla, CA 92093 USA
所属机构
Univ Calif San Diego
University of California System
University of California San Diego
Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
所属机构
Univ Calif San Diego
University of California System
University of California San Diego
University of California San Diego Jacobs School of Engineering
University of California San Diego Department of Bioengineering
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓