喵ID:ljUcif免责声明

Deep learning systems detect dysplasia with human-like accuracy using histopathology and probe-based confocal laser endomicroscopy.

基本信息

DOI:
10.1038/s41598-021-84510-4
发表时间:
2021-03-03
影响因子:
4.6
通讯作者:
Syed S
中科院分区:
综合性期刊3区
文献类型:
Journal Article
作者: Guleria S;Shah TU;Pulido JV;Fasullo M;Ehsan L;Lippman R;Sali R;Mutha P;Cheng L;Brown DE;Syed S研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Probe-based confocal laser endomicroscopy (pCLE) allows for real-time diagnosis of dysplasia and cancer in Barrett’s esophagus (BE) but is limited by low sensitivity. Even the gold standard of histopathology is hindered by poor agreement between pathologists. We deployed deep-learning-based image and video analysis in order to improve diagnostic accuracy of pCLE videos and biopsy images. Blinded experts categorized biopsies and pCLE videos as squamous, non-dysplastic BE, or dysplasia/cancer, and deep learning models were trained to classify the data into these three categories. Biopsy classification was conducted using two distinct approaches—a patch-level model and a whole-slide-image-level model. Gradient-weighted class activation maps (Grad-CAMs) were extracted from pCLE and biopsy models in order to determine tissue structures deemed relevant by the models. 1970 pCLE videos, 897,931 biopsy patches, and 387 whole-slide images were used to train, test, and validate the models. In pCLE analysis, models achieved a high sensitivity for dysplasia (71%) and an overall accuracy of 90% for all classes. For biopsies at the patch level, the model achieved a sensitivity of 72% for dysplasia and an overall accuracy of 90%. The whole-slide-image-level model achieved a sensitivity of 90% for dysplasia and 94% overall accuracy. Grad-CAMs for all models showed activation in medically relevant tissue regions. Our deep learning models achieved high diagnostic accuracy for both pCLE-based and histopathologic diagnosis of esophageal dysplasia and its precursors, similar to human accuracy in prior studies. These machine learning approaches may improve accuracy and efficiency of current screening protocols.
基于探针的共聚焦激光显微内镜检查(pCLE)可对巴雷特食管(BE)的异型增生和癌症进行实时诊断,但灵敏度较低。即使组织病理学的金标准也因病理学家之间的一致性差而受阻。我们采用基于深度学习的图像和视频分析,以提高pCLE视频和活检图像的诊断准确性。不知情的专家将活检组织和pCLE视频分类为鳞状、非异型增生性BE或异型增生/癌症,并训练深度学习模型将数据分为这三类。活检分类采用两种不同的方法——切片级别模型和整张切片图像级别模型。从pCLE和活检模型中提取梯度加权类激活图(Grad - CAMs),以确定模型认为相关的组织结构。使用1970个pCLE视频、897931个活检切片和387张整张切片图像来训练、测试和验证模型。在pCLE分析中,模型对异型增生的灵敏度较高(71%),所有类别总体准确率为90%。对于切片级别的活检,模型对异型增生的灵敏度为72%,总体准确率为90%。整张切片图像级别模型对异型增生的灵敏度为90%,总体准确率为94%。所有模型的Grad - CAMs在医学相关组织区域均有激活。我们的深度学习模型在基于pCLE和组织病理学对食管异型增生及其前体的诊断中均取得了较高的诊断准确性,与先前研究中的人类准确性相似。这些机器学习方法可能会提高当前筛查方案的准确性和效率。
参考文献(0)
被引文献(0)
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
DOI:
10.1109/iccv.2017.74
发表时间:
2017-01-01
期刊:
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
影响因子:
0
作者:
Selvaraju, Ramprasaath R.;Cogswell, Michael;Batra, Dhruv
通讯作者:
Batra, Dhruv
Novel Probe-Based Confocal Laser Endomicroscopy Criteria and Interobserver Agreement for the Detection of Dysplasia in Barrett's Esophagus
DOI:
10.1038/ajg.2011.294
发表时间:
2011-11-01
期刊:
AMERICAN JOURNAL OF GASTROENTEROLOGY
影响因子:
9.8
作者:
Gaddam, Srinivas;Mathur, Sharad C.;Sharma, Prateek
通讯作者:
Sharma, Prateek
Poor Interobserver Agreement in the Distinction of High-Grade Dysplasia and Adenocarcinoma in Pretreatment Barrett's Esophagus Biopsies
DOI:
10.1111/j.1572-0241.2008.02020.x
发表时间:
2008-09-01
期刊:
AMERICAN JOURNAL OF GASTROENTEROLOGY
影响因子:
9.8
作者:
Downs-Kelly, Erinn;Mendelin, Joel E.;Goldblum, John R.
通讯作者:
Goldblum, John R.
Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett's oesophagus: a prospective, international, randomised controlled trial
DOI:
10.1136/gutjnl-2011-300962
发表时间:
2013-01-01
期刊:
GUT
影响因子:
24.5
作者:
Sharma, Prateek;Hawes, Robert H.;Bergman, Jacques J.
通讯作者:
Bergman, Jacques J.
Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett's esophagus.
DOI:
10.1055/s-0043-124868
发表时间:
2018-04
期刊:
Endoscopy international open
影响因子:
2.6
作者:
Shah T;Lippman R;Kohli D;Mutha P;Solomon S;Zfass A
通讯作者:
Zfass A

数据更新时间:{{ references.updateTime }}

关联基金

Computational Characterization of Environmental Enteropathy
批准号:
10627838
批准年份:
2019
资助金额:
19.26
项目类别:
Syed S
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓