喵ID:lcPJia免责声明

Improved Characterization of Diffusion in Normal and Cancerous Prostate Tissue Through Optimization of Multicompartmental Signal Models.

基本信息

DOI:
10.1002/jmri.27393
发表时间:
2021-03
期刊:
Journal of magnetic resonance imaging : JMRI
影响因子:
--
通讯作者:
Dale AM
中科院分区:
其他
文献类型:
Journal Article
作者: Conlin CC;Feng CH;Rodriguez-Soto AE;Karunamuni RA;Kuperman JM;Holland D;Rakow-Penner R;Hahn ME;Seibert TM;Dale AM研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Multicompartmental modeling outperforms conventional DWI in the assessment of prostate cancer. Optimized multicompartmental models could further improve the detection and characterization of prostate cancer. To optimize multicompartmental signal models and apply them to study diffusion in normal and cancerous prostate tissue in vivo. Retrospective. 46 patients who underwent MRI examination for suspected prostate cancer; 23 had prostate cancer and 23 had no detectable cancer. 3T multi-shell diffusion-weighted sequence. Multicompartmental models with 2–5 tissue compartments were fit to DWI data from the prostate to determine optimal compartmental ADCs. These ADCs were used to compute signal contributions from the different compartments. The Bayesian Information Criterion (BIC) and model-fitting residuals were calculated to quantify model complexity and goodness-of-fit. Tumor contrast-to-noise ratio (CNR) and tumor-to-background signal intensity ratio (SIR) were computed for conventional DWI and multicompartmental signal-contribution maps. ANOVA and two-sample t-tests (α=0.05) were used to compare fitting residuals between prostate regions and between multicompartmental models. T-tests (α=0.05) were also used to assess differences in compartmental signal-fraction between tissue types and CNR/SIR between conventional DWI and multicompartmental models. The lowest BIC was observed from the 4-compartment model, with optimal ADCs of 5.2e-4, 1.9e-3, 3.0e-3, and >3.0e-2 mm2/s. Fitting residuals from multicompartmental models were significantly lower than from conventional ADC mapping (P<0.05). Residuals were lowest in the peripheral zone and highest in tumors. Tumor tissue showed the largest reduction in fitting residual by increasing model order. Tumors had a greater proportion of signal from compartment 1 than normal tissue (P<0.05). Tumor CNR and SIR were greater on compartment-1 signal maps than conventional DWI (P<0.05) and increased with model order. The 4-compartment signal model best described diffusion in the prostate. Compartmental signal-contributions revealed by this model may improve assessment of prostate cancer.
多室模型在前列腺癌评估中优于传统弥散加权成像(DWI)。优化的多室模型可进一步提高前列腺癌的检测和定性能力。 目的:优化多室信号模型并将其应用于体内正常和癌性前列腺组织的弥散研究。 研究类型:回顾性研究。 研究对象:46例因疑似前列腺癌接受磁共振成像(MRI)检查的患者;其中23例患有前列腺癌,23例未检测到癌症。 检查方法:3T多壳弥散加权序列。 将具有2 - 5个组织室的多室模型与前列腺的DWI数据进行拟合,以确定最佳的室表观弥散系数(ADC)。利用这些ADC计算不同室的信号贡献。计算贝叶斯信息准则(BIC)和模型拟合残差,以量化模型复杂性和拟合优度。计算传统DWI和多室信号贡献图的肿瘤对比噪声比(CNR)和肿瘤与背景信号强度比(SIR)。 采用方差分析和两样本t检验(α = 0.05)比较前列腺不同区域以及多室模型之间的拟合残差。t检验(α = 0.05)还用于评估不同组织类型之间室信号分数的差异以及传统DWI和多室模型之间的CNR/SIR差异。 4室模型的BIC最低,其最佳ADC分别为5.2×10⁻⁴、1.9×10⁻³、3.0×10⁻³和>3.0×10⁻² mm²/s。多室模型的拟合残差显著低于传统ADC成像(P < 0.05)。外周带的残差最低,肿瘤中的残差最高。通过增加模型阶数,肿瘤组织的拟合残差降幅最大。肿瘤中来自第1室的信号比例高于正常组织(P < 0.05)。在第1室信号图上,肿瘤的CNR和SIR大于传统DWI(P < 0.05),且随模型阶数增加而增大。 4室信号模型最能描述前列腺中的弥散情况。该模型揭示的室信号贡献可能会改善前列腺癌的评估。
参考文献(0)
被引文献(0)
Abdominal MRI at 3.0 T: LAVA-Flex Compared With Conventional Fat Suppression T1-Weighted Images
DOI:
10.1002/jmri.24329
发表时间:
2014-07-01
期刊:
JOURNAL OF MAGNETIC RESONANCE IMAGING
影响因子:
4.4
作者:
Li, Xing Hui;Zhu, Jiang;Zeng, Nan Lin
通讯作者:
Zeng, Nan Lin
Relationship between kurtosis and bi-exponential characterization of high b-value diffusion-weighted imaging: application to prostate cancer
DOI:
10.1177/0284185118770889
发表时间:
2018-12-01
期刊:
ACTA RADIOLOGICA
影响因子:
1.3
作者:
Karunamuni, Roshan A.;Kuperman, Joshua;White, Nathan S.
通讯作者:
White, Nathan S.
Diffusion-Weighted Magnetic Resonance Imaging in the Prostate Transition Zone Histopathological Validation Using Magnetic Resonance-Guided Biopsy Specimens
DOI:
10.1097/rli.0b013e31828eeaf9
发表时间:
2013-10-01
期刊:
INVESTIGATIVE RADIOLOGY
影响因子:
6.7
作者:
Hoeks, Caroline M. A.;Vos, Eline K.;Scheenen, Tom W.
通讯作者:
Scheenen, Tom W.
The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer
DOI:
10.1016/s0090-4295(97)00306-3
发表时间:
1997-10-01
期刊:
UROLOGY
影响因子:
2.1
作者:
Norberg, M;Egevad, L;Busch, C
通讯作者:
Busch, C
Convergence properties of the Nelder-Mead simplex method in low dimensions
DOI:
10.1137/s1052623496303470
发表时间:
1998-12-21
期刊:
SIAM JOURNAL ON OPTIMIZATION
影响因子:
3.1
作者:
Lagarias, JC;Reeds, JA;Wright, PE
通讯作者:
Wright, PE

数据更新时间:{{ references.updateTime }}

关联基金

Improving assessment of prostate cancer bone metastases using advanced diffusion imaging
批准号:
10432040
批准年份:
2019
资助金额:
20.13
项目类别:
Dale AM
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓