喵ID:lDEaEb免责声明

Wrapper-Based Federated Feature Selection for IoT Environments

适用于物联网环境的基于包装器的联合特征选择

基本信息

DOI:
--
发表时间:
2023
期刊:
International Conference on Computing, Networking and Communications
影响因子:
--
通讯作者:
Hana Khamfroush
中科院分区:
文献类型:
--
作者: Afsaneh Mahanipour;Hana Khamfroush研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Novel Internet of Things (IoT) applications have emerged as enabling technologies for the smart city initiative. IoT devices collect or produce huge multi-modal data that is either processed on the edge or sent to a central cloud for processing. The collected data sets are pre-processed by methods known as “feature selection”, to remove redundant, irrelevant, or noisy features. Feature selection will help with improving the results achieved by the learning method as well as reducing the computational complexity of the model. The goal is to select the most informative features of data and only transmit the selected features to the edge/cloud servers for further processing. This leads to smaller costs for data transmission to the servers. In this paper, a novel wrapper-based federated feature selection (FFS) algorithm is proposed, where IoT devices collaborate to select the most informative features without sharing their local data sets. The proposed FFS algorithm uses binary gravitational search algorithm (BGSA) in a federated and collaborative manner to select a small enough subset of informative attributes and provide an improved trade-off between communication cost and learning accuracy. Our experimental results on three data sets including MNIST, Fashion-MNIST, and MAV demonstrate that the proposed BGSAFFS method can in average remove more than 50% of features without losing information. The obtained results prove the effectiveness of the proposed method in achieving a good trade-off between accuracy and communication cost in comparison to other state-of-the-art feature selection methods as well as a no-feature selection baseline.
新颖的物联网应用程序已成为智慧城市计划的启用技术。通过称为“特征选择”的方法进行处理,以删除冗余,无关紧要或噪声特征。降低模型的计算复杂性提出了一种基于包装的新型联合特征选择(FFS)算法,在其中,IoT设备协作以选择最有用的功能,而无需共享其本地数据集。引力搜索算法(BGSA)以联合和协作的方式选择了足够小的信息属性,并在包括MNIST,Fashion-MNIST和包括MNIST的三个数据集之间提供了沟通成本和学习精度之间的折衷。 MAV证明,所提出的BGSAFFS方法平均可以删除50%以上的功能,而不会丢失信息。与其他最先进的特征选择方法相比,在准确性和沟通成本之间取决于良好的权衡方面的拟议方法以及不合作选择的基线。
参考文献(1)
被引文献(3)
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
DOI:
发表时间:
2016-10
期刊:
ArXiv
影响因子:
0
作者:
Jakub Konecný;H. B. McMahan;Daniel Ramage;Peter Richtárik
通讯作者:
Jakub Konecný;H. B. McMahan;Daniel Ramage;Peter Richtárik

数据更新时间:{{ references.updateTime }}

Hana Khamfroush
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓