喵ID:jccAwp免责声明

GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling

GNS:一种基于图神经网络的通用模拟器,用于颗粒和流体建模

基本信息

DOI:
10.48550/arxiv.2211.10228
发表时间:
2022
期刊:
J. Open Source Softw.
影响因子:
--
通讯作者:
J. Vantassel
中科院分区:
文献类型:
--
作者: Krishna Kumar;J. Vantassel研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We develop a PyTorch-based Graph Network Simulator (GNS) that learns physics and predicts the flow behavior of particulate and fluid systems. GNS discretizes the domain with nodes representing a collection of material points and the links connecting the nodes representing the local interaction between particles or clusters of particles. The GNS learns the interaction laws through message passing on the graph. GNS has three components: (a) Encoder, which embeds particle information to a latent graph, the edges are learned functions; (b) Processor, which allows data propagation and computes the nodal interactions across steps; and (c) Decoder, which extracts the relevant dynamics (e.g., particle acceleration) from the graph. We introduce physics-inspired simple inductive biases, such as an inertial frame that allows learning algorithms to prioritize one solution (constant gravitational acceleration) over another, reducing learning time. The GNS implementation uses semi-implicit Euler integration to update the next state based on the predicted accelerations. GNS trained on trajectory data is generalizable to predict particle kinematics in complex boundary conditions not seen during training. The trained model accurately predicts within a 5\% error of its associated material point method (MPM) simulation. The predictions are 5,000x faster than traditional MPM simulations (2.5 hours for MPM simulations versus 20 s for GNS simulation of granular flow). GNS surrogates are popular for solving optimization, control, critical-region prediction for in situ viz, and inverse-type problems. The GNS code is available under the open-source MIT license at https://github.com/geoelements/gns.
我们开发了一种基于PyTorch的图网络模拟器(GNS),它能学习物理知识并预测颗粒和流体系统的流动行为。GNS通过节点离散化区域,节点代表一组物质点,连接节点的链路代表粒子或粒子簇之间的局部相互作用。GNS通过在图上传递信息来学习相互作用规律。GNS有三个组成部分:(a)编码器,它将粒子信息嵌入到一个潜在图中,边是学习到的函数;(b)处理器,它允许数据传播并计算跨步骤的节点相互作用;(c)解码器,它从图中提取相关动力学(例如粒子加速度)。我们引入了受物理启发的简单归纳偏差,例如一个惯性系,它允许学习算法优先选择一种解决方案(恒定重力加速度)而非另一种,从而减少学习时间。GNS的实现使用半隐式欧拉积分根据预测的加速度更新下一个状态。基于轨迹数据训练的GNS可推广用于预测训练期间未见过的复杂边界条件下的粒子运动学。训练后的模型能在其相关物质点法(MPM)模拟的5%误差范围内准确预测。预测速度比传统的MPM模拟快5000倍(MPM模拟需要2.5小时,而GNS模拟颗粒流只需20秒)。GNS替代模型在解决优化、控制、原位可视化的关键区域预测以及逆问题等方面很受欢迎。GNS代码在开源的MIT许可证下可在https://github.com/geoelements/gns获取。
参考文献(3)
被引文献(7)
A moving least squares material point method with displacement discontinuity and two-way rigid body coupling
DOI:
10.1145/3197517.3201293
发表时间:
2018-07
期刊:
ACM Transactions on Graphics (TOG)
影响因子:
0
作者:
Yuanming Hu;Yu Fang;Z. Ge;Ziyin Qu;Yixin Zhu;Andre Pradhana;Chenfanfu Jiang
通讯作者:
Yuanming Hu;Yu Fang;Z. Ge;Ziyin Qu;Yixin Zhu;Andre Pradhana;Chenfanfu Jiang
A Comprehensive Survey on Graph Neural Networks
DOI:
10.1109/tnnls.2020.2978386
发表时间:
2021-01-01
期刊:
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
影响因子:
10.4
作者:
Wu, Zonghan;Pan, Shirui;Yu, Philip S.
通讯作者:
Yu, Philip S.

数据更新时间:{{ references.updateTime }}

J. Vantassel
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓