喵ID:jSlpGh免责声明

Quantification of model uncertainties for reinforced concrete columns subjected to fire

基本信息

DOI:
10.1016/j.firesaf.2019.102832
发表时间:
2019-09-01
期刊:
Research article
影响因子:
--
通讯作者:
Guido Morgenthal
中科院分区:
文献类型:
articles
作者: Marcus Achenbach;Thomas Gernay;Guido Morgenthal研究方向: -- MeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

In structural fire engineering, several methods co-exist for the determination of the fire resistance of reinforced concrete compression members. However, there is no general agreement about which method should be preferred, and no comparative analysis of the accuracy of the methods is available. One approach to judge on the accuracy of a given method is to apply it for recalculation of well-defined laboratory test and to evaluate the difference between experiments and simulations. The aim of the article is to present a methodology to obtain, from the results of recalculation, relevant statistical key data for the probabilistic characterization of the model uncertainties. Methods of descriptive statistics are applied for the evaluation of the results of the recalculation of laboratory test. In case of prior knowledge from previously published results, methods of inferential statistics are also examined to adjust the statistical key data. In this case, the use of a response surface methodology with descriptive statistics is further presented in order to cross check the results of the inferential method. The application of the presented framework is demonstrated for reinforced concrete columns subjected to a standard fire, but is also applicable for any resistance model in civil engineering.
在结构防火工程中,确定钢筋混凝土受压构件耐火性的方法有多种并存。然而,对于应优先采用哪种方法并没有普遍共识,也没有对这些方法的准确性进行比较分析。判断某一给定方法准确性的一种途径是将其应用于对明确的实验室试验进行重新计算,并评估实验与模拟之间的差异。本文的目的是提出一种方法,以便从重新计算的结果中获取用于对模型不确定性进行概率表征的相关统计关键数据。描述性统计方法被应用于评估实验室试验重新计算的结果。在有先前已发表结果的先验知识的情况下,也会研究推断统计方法以调整统计关键数据。在这种情况下,还进一步介绍了使用带有描述性统计的响应面方法,以便交叉核对推断方法的结果。所提出的框架应用于遭受标准火灾的钢筋混凝土柱,但也适用于土木工程中的任何抗力模型。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Guido Morgenthal
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓