A novel protocol utilizing a phase-field model was used to process the reconstruction of a polycrystalline microstructure from synchrotron-based high-energy X-ray diffraction microscopy. This approach is an intuitive and standardized alternative to typical image processing routines. It preserves high-confidence regions by deploying a completeness-based mobility parameter in the phase-field model. Phase-field governing equations result in a space-filling grain map that adheres to the physics of the microstructure, i.e., it penalizes high-energy grain shapes and configurations and promotes grain boundary (GB) smoothing. We quantify GB smoothing by measuring, in 2D, the circularity of interior grains and the tortuosity of individual GBs. Results are also presented in 3D. This post-processing protocol can be applied to any X-ray diffraction microscopy reconstruction that consists of a spatial map of grains and corresponding confidence values. Furthermore, it can be adapted to accommodate other types of microstructures, including those that are polyphase.
一种利用相场模型的新协议被用于从基于同步加速器的高能X射线衍射显微镜对多晶微观结构进行重建。这种方法是对典型图像处理程序的一种直观且标准化的替代方案。它通过在相场模型中设置一个基于完整性的迁移率参数来保留高置信区域。相场控制方程产生一个符合微观结构物理特性的空间填充晶粒图,即它对高能晶粒形状和组态进行惩罚,并促进晶界(GB)平滑。我们通过在二维中测量内部晶粒的圆形度和单个晶界的曲折度来量化晶界平滑。结果也在三维中呈现。这种后处理协议可应用于任何由晶粒空间图和相应置信值组成的X射线衍射显微镜重建。此外,它可进行调整以适应其他类型的微观结构,包括多相微观结构。