喵ID:ih1GU6免责声明

A Real-Time Fire Detection Method from Video with Multifeature Fusion

一种多特征融合的视频实时火灾检测方法

基本信息

DOI:
10.1155/2019/1939171
发表时间:
2019-07-14
影响因子:
--
通讯作者:
Song, Tao
中科院分区:
工程技术3区
文献类型:
Article
作者: Gong, Faming;Li, Chuantao;Song, Tao研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The threat to people's lives and property posed by fires has become increasingly serious. To address the problem of a high false alarm rate in traditional fire detection, an innovative detection method based on multifeature fusion of flame is proposed. First, we combined the motion detection and color detection of the flame as the fire preprocessing stage. This method saves a lot of computation time in screening the fire candidate pixels. Second, although the flame is irregular, it has a certain similarity in the sequence of the image. According to this feature, a novel algorithm of flame centroid stabilization based on spatiotemporal relation is proposed, and we calculated the centroid of the flame region of each frame of the image and added the temporal information to obtain the spatiotemporal information of the flame centroid. Then, we extracted features including spatial variability, shape variability, and area variability of the flame to improve the accuracy of recognition. Finally, we used support vector machine for training, completed the analysis of candidate fire images, and achieved automatic fire monitoring. Experimental results showed that the proposed method could improve the accuracy and reduce the false alarm rate compared with a state-of-the-art technique. The method can be applied to real-time camera monitoring systems, such as home security, forest fire alarms, and commercial monitoring.
火灾对人民生命财产造成的威胁日益严重。为解决传统火灾探测中误报率高的问题,提出了一种基于火焰多特征融合的创新探测方法。首先,我们将火焰的运动检测和颜色检测相结合,作为火灾预处理阶段。这种方法在筛选火灾候选像素时节省了大量计算时间。其次,尽管火焰是不规则的,但在图像序列中具有一定的相似性。基于这一特征,提出了一种基于时空关系的火焰质心稳定新算法,我们计算图像每一帧火焰区域的质心,并添加时间信息以获得火焰质心的时空信息。然后,我们提取包括火焰的空间变异性、形状变异性和面积变异性在内的特征,以提高识别的准确性。最后,我们使用支持向量机进行训练,完成对候选火灾图像的分析,实现火灾自动监测。实验结果表明,与现有技术相比,所提出的方法能够提高准确性并降低误报率。该方法可应用于实时摄像头监测系统,如家庭安防、森林火灾报警和商业监测等。
参考文献(42)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Song, Tao
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓