喵ID:ifMqb9免责声明

Local Geometry of Nonconvex Spike Deconvolution From Low-Pass Measurements

基本信息

DOI:
10.1109/jsait.2023.3262689
发表时间:
2022-08
期刊:
IEEE Journal on Selected Areas in Information Theory
影响因子:
--
通讯作者:
Maxime Ferreira Da Costa;Yuejie Chi
中科院分区:
其他
文献类型:
--
作者: Maxime Ferreira Da Costa;Yuejie Chi研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Spike deconvolution is the problem of recovering the point sources from their convolution with a known point spread function, which plays a fundamental role in many sensing and imaging applications. In this paper, we investigate the local geometry of recovering the parameters of point sources—including both amplitudes and locations—by minimizing a natural nonconvex least-squares loss function measuring the observation residuals. We propose preconditioned variants of gradient descent (GD), where the search direction is scaled via some carefully designed preconditioning matrices. We begin with a simple fixed preconditioner design, which adjusts the learning rates of the locations at a different scale from those of the amplitudes, and show it achieves a linear rate of convergence—in terms of entrywise errors—when initialized close to the ground truth, as long as the separation between the true spikes is sufficiently large. However, the convergence rate slows down significantly when the dynamic range of the source amplitudes is large. To bridge this issue, we introduce an adaptive preconditioner design, which compensates for the learning rates of different sources in an iteration-varying manner based on the current estimate. The adaptive design provably leads to an accelerated convergence rate that is independent of the dynamic range, highlighting the benefit of adaptive preconditioning in nonconvex spike deconvolution. Numerical experiments are provided to corroborate the theoretical findings.
Spike Deonvolution是从已知的点扩散功能中恢复其点源的问题,在本文中,我们在许多敏感性和成像应用中起着基本作用。放大器和位置 - 通过将天然的非covex最小二乘损失函数降至最低,我们提出了梯度下降(GD)的预处理变体(GD)。在搜索方向通过一些精心设计的预处理进行缩放,我们从简单的固定预处理设计开始,该设计以与放大器的尺度不同的规模调整了位置的学习率,并表明它达到了线性收敛速度 - 就进入误差而言,只要真正的峰值之间的分离足够大,就会接近地面真相。当我们介绍一个自适应的预处理设计时,当源头的动态范围很大。与动态范围无关的加速收敛速率,突出了在非convex Spike Deonvolution中的自适应预处理的好处。证实理论发现。
参考文献(56)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Maxime Ferreira Da Costa;Yuejie Chi
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓