喵ID:iKqSQP免责声明

ULPT: A User-Centric Location Privacy Trading Framework for Mobile Crowd Sensing

基本信息

DOI:
10.1109/tmc.2021.3058181
发表时间:
2021-02
影响因子:
7.9
通讯作者:
Wenqiang Jin;Mingyan Xiao;Linke Guo;Lei Yang;Ming Li
中科院分区:
计算机科学2区
文献类型:
--
作者: Wenqiang Jin;Mingyan Xiao;Linke Guo;Lei Yang;Ming Li研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Mobile crowd sensing (MCS) arises as a promising data collection paradigm that leverages the power of ubiquitous mobile devices to acquire rich information regarding their surrounding environment. In many location-based sensing tasks, workers are required to associate their sensing reports with corresponding geographic coordinates. Such information leaves a trail of worker's historical location record which thus poses a severe threat to their location privacy. On the other hand, individual workers may perceive location privacy differently. Instead of following conventional solutions that aim to perfectly hide user privacy, this paper adopts a novel alternative approach. A user-centric location privacy trading framework, called ULPT, is constructed to facilitate location privacy trading between workers and the platform. Each worker can decide how much location privacy to disclose to the platform in an MCS task based on its own location privacy leakage budget $\xi$ξ. The higher $\xi$ξ is, the more privacy its reported location discloses. Accordingly, it receives higher payment from the platform as compensation. Besides, ULPT enables the platform to select a suitable set of winning workers to achieve desirable MCS service accuracy while taking into account of its budget limit and worker privacy requirements. For this purpose, a heuristic algorithm is devised with a bounded optimality gap. As formally proved in this manuscript, ULPT guarantees a series of nice properties, including $\xi$ξ-privacy, $(\alpha, \beta)$(α,β)-accuracy, budget feasibility. Moreover, both rigorous theoretical analysis and extensive simulations are conducted to evaluate tradeoffs among these three.
移动人群传感器(MCS)作为保证的数据收集范式,它利用无处不在的移动设备的功能在许多基于位置的敏感性任务中获取有关其周围环境的丰富信息。这些信息留下了一系列工人的历史记录,因此对其位置隐私构成了严重的威胁。单个工人可以以不同的方式感知位置,而不是遵循旨在掩盖用户隐私的传统解决方案,而是采用一种新颖的替代方法。平台。泄漏预算$ \ xi $ξ。为了实现其预算限制和工人隐私要求,赢得工人以实现理想的MC服务准确性。正式在此手稿中证明,ULPT保证了一系列不错的属性,包括$ \ xi $ξ-私人,$(\ alpha,\ beta)$(α,β) - 出现,准确性,预算可行性。进行了广泛的模拟,以评估这三个中的权衡。
参考文献(60)
被引文献(11)

数据更新时间:{{ references.updateTime }}

Wenqiang Jin;Mingyan Xiao;Linke Guo;Lei Yang;Ming Li
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓