喵ID:h9lra1免责声明

Examining longitudinal markers of bladder cancer recurrence through a semiautonomous machine learning system for quantifying specimen atypia from urine cytology.

基本信息

DOI:
10.1002/cncy.22725
发表时间:
2023-09
影响因子:
3.4
通讯作者:
Vaickus, Louis J.
中科院分区:
医学3区
文献类型:
Journal Article
作者: Levy, Joshua J.;Chan, Natt;Marotti, Jonathan D.;Rodrigues, Nathalie J.;Ismail, A. Aziz O.;Kerr, Darcy A.;Gutmann, Edward J.;Glass, Ryan E.;Dodge, Caroline P.;Suriawinata, Arief A.;Christensen, Brock C.;Liu, Xiaoying;Vaickus, Louis J.研究方向: Oncology;PathologyMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

Urine cytology (UC) is generally considered the primary approach for screening for recurrence of bladder cancer. However, it is currently unclear how best to use cytological exams themselves for the assessment and early detection of recurrence, beyond identifying a positive finding which requires more invasive methods to confirm recurrence and decide on therapeutic options. As screening programs are frequent, and can be burdensome, finding quantitative means to reduce this burden for patients, cytopathologists and urologists is an important endeavor and can improve both the efficiency and reliability of findings. Additionally, identifying ways to risk-stratify patients is crucial for improving quality of life while reducing the risk of future recurrence or progression of the cancer. In this study, we leveraged a computational machine learning tool, AutoParis-X, to extract imaging features from UC exams longitudinally to study the predictive potential of urine cytology for assessing recurrence risk. This study examined how the significance of imaging predictors changes over time before and after surgery to determine which predictors and time periods are most relevant for assessing recurrence risk. Results indicate that imaging predictors extracted using AutoParis-X can predict recurrence as well or better than traditional cytological / histological assessments alone and that the predictiveness of these features is variable across time, with key differences in overall specimen atypia identified immediately before tumor recurrence. Further research will clarify how computational methods can be effectively utilized in high volume screening programs to improve recurrence detection and complement traditional modes of assessment. This study used AutoParis-X, a machine learning tool, to extract imaging features from urine cytology exams to predict recurrence risk in bladder cancer patients. The results demonstrate that quantitative features of urine specimen atypia can predict recurrence as well or better than traditional cytological/histological assessments alone and can potentially complement traditional methods of assessment in screening programs pending further development and validation of computational methods which leverage multiple longitudinal cytology exams.
尿液细胞学检查(UC)通常被认为是筛查膀胱癌复发的主要方法。然而,目前除了识别出阳性结果(这需要更具侵入性的方法来确认复发并决定治疗方案)之外,尚不清楚如何最好地利用细胞学检查本身来评估和早期发现复发。由于筛查项目频繁且可能是繁重的,寻找定量方法来减轻患者、细胞病理学家和泌尿科医生的负担是一项重要的工作,并且可以提高检查结果的效率和可靠性。此外,确定对患者进行风险分层的方法对于提高生活质量同时降低癌症未来复发或进展的风险至关重要。在这项研究中,我们利用一种计算机机器学习工具AutoParis - X,纵向从尿液细胞学检查中提取影像特征,以研究尿液细胞学在评估复发风险方面的预测潜力。这项研究考察了影像预测因子的重要性在手术前后如何随时间变化,以确定哪些预测因子和时间段与评估复发风险最为相关。结果表明,使用AutoParis - X提取的影像预测因子可以像单独的传统细胞学/组织学评估一样好甚至更好地预测复发,并且这些特征的预测能力随时间变化,在肿瘤复发前即刻识别出的整体标本异型性方面存在关键差异。进一步的研究将阐明如何在大量筛查项目中有效利用计算方法来提高复发检测并补充传统的评估模式。 这项研究使用一种机器学习工具AutoParis - X从尿液细胞学检查中提取影像特征,以预测膀胱癌患者的复发风险。结果表明,尿液标本异型性的定量特征可以像单独的传统细胞学/组织学评估一样好甚至更好地预测复发,并且在利用多次纵向细胞学检查的计算方法得到进一步开发和验证之前,可能在筛查项目中补充传统的评估方法。
参考文献(131)
被引文献(2)
Atypical category of the Johns Hopkins Template has higher ROM than the Paris System but the Paris system is more applicable for suspicious category
DOI:
10.1159/000529484
发表时间:
2023-02-02
期刊:
ACTA CYTOLOGICA
影响因子:
1.8
作者:
Celik, Betul;Kavas, Gamze
通讯作者:
Kavas, Gamze
Urine cytology in monitoring recurrence in urothelial carcinoma after radical cystectomy and urinary diversion
DOI:
10.1002/cncy.21650
发表时间:
2016-04-01
期刊:
CANCER CYTOPATHOLOGY
影响因子:
3.4
作者:
Chen, Haiyan;Liu, Lin;Wojcik, Eva M.
通讯作者:
Wojcik, Eva M.
The Importance of Hospital and Surgeon Volume as Major Determinants of Morbidity and Mortality After Radical Cystectomy for Bladder Cancer: A Systematic Review and Recommendations by the European Association of Urology Muscle-invasive and Metastatic Bladder Cancer Guideline Panel
DOI:
10.1016/j.euo.2019.11.005
发表时间:
2020-04-01
期刊:
EUROPEAN UROLOGY ONCOLOGY
影响因子:
8.2
作者:
Bruins, Harman M.;Veskimae, Erik;Witjes, J. Alfred
通讯作者:
Witjes, J. Alfred
Liquid Biopsy Biomarkers in Urine: A Route towards Molecular Diagnosis and Personalized Medicine of Bladder Cancer.
DOI:
10.3390/jpm11030237
发表时间:
2021-03-23
期刊:
Journal of personalized medicine
影响因子:
0
作者:
Ferro M;La Civita E;Liotti A;Cennamo M;Tortora F;Buonerba C;Crocetto F;Lucarelli G;Busetto GM;Del Giudice F;de Cobelli O;Carrieri G;Porreca A;Cimmino A;Terracciano D
通讯作者:
Terracciano D
Monitoring Treatment Response and Metastatic Relapse in Advanced Bladder Cancer by Liquid Biopsy Analysis
DOI:
10.1016/j.eururo.2017.09.011
发表时间:
2018-04-01
期刊:
EUROPEAN UROLOGY
影响因子:
23.4
作者:
Birkenkamp-Demtroder, Karin;Christensen, Emil;Dyrskjot, Lars
通讯作者:
Dyrskjot, Lars

数据更新时间:{{ references.updateTime }}

关联基金

COBRE Center for Molecular Epidemiology - Equipment Supplement
批准号:
10400262
批准年份:
2021
资助金额:
15.05
项目类别:
Vaickus, Louis J.
通讯地址:
Dartmouth Coll, Dept Community & Family Med, Geisel Sch Med, Hanover, NH USA
所属机构:
Dartmouth CollnDartmouth College
电子邮件地址:
--
通讯地址历史:
Dartmouth Hitchcock Med Ctr, Dept Pathol & Lab Med, Emerging Diagnost & Invest Technol, Lebanon, NH 03766 USA
所属机构
Dartmouth Hitchcock Med Ctr
Dartmouth College
Dartmouth Hitchcock Med Ctr, Dept Dermatol, Lebanon, NH 03766 USA
所属机构
Dartmouth Hitchcock Med Ctr
Dartmouth College
Dartmouth Coll, Dept Epidemiol, Geisel Sch Med, Hanover, NH 03755 USA
所属机构
Dartmouth Coll
Dartmouth College
Dartmouth Coll, Program Quantitat Biomed Sci, Geisel Sch Med, Hanover, NH 03755 USA
所属机构
Dartmouth Coll
Dartmouth College
Dartmouth Coll, Geisel Sch Med, Hanover, NH USA
所属机构
Dartmouth Coll
Dartmouth College
Dartmouth College Geisel School of Medicine
White River Junction VA Med Ctr, White River Jct, VT USA
所属机构
White River Junction VA Med Ctr
UPMC East, Pittsburgh, PA USA
所属机构
UPMC East
Cambridge Hlth Alliance, Cambridge, MA USA
所属机构
Cambridge Hlth Alliance
Harvard University
Cambridge Health Alliance
Dartmouth Coll, Dept Mol & Syst Biol, Geisel Sch Med, Hanover, NH USA
所属机构
Dartmouth Coll
Dartmouth College
Dartmouth College Geisel School of Medicine
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓