喵ID:h8mmsh免责声明

Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.

通过全基因组数据的贝叶斯网络整合预测真核转录协同性

基本信息

DOI:
10.1093/nar/gkp625
发表时间:
2009-10
影响因子:
14.9
通讯作者:
Xia Y
中科院分区:
生物学2区
文献类型:
Journal Article
作者: Wang Y;Zhang XS;Xia Y研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Transcriptional cooperativity among several transcription factors (TFs) is believed to be the main mechanism of complexity and precision in transcriptional regulatory programs. Here, we present a Bayesian network framework to reconstruct a high-confidence whole-genome map of transcriptional cooperativity in Saccharomyces cerevisiae by integrating a comprehensive list of 15 genomic features. We design a Bayesian network structure to capture the dominant correlations among features and TF cooperativity, and introduce a supervised learning framework with a well-constructed gold-standard dataset. This framework allows us to assess the predictive power of each genomic feature, validate the superior performance of our Bayesian network compared to alternative methods, and integrate genomic features for optimal TF cooperativity prediction. Data integration reveals 159 high-confidence predicted cooperative relationships among 105 TFs, most of which are subsequently validated by literature search. The existing and predicted transcriptional cooperativities can be grouped into three categories based on the combination patterns of the genomic features, providing further biological insights into the different types of TF cooperativity. Our methodology is the first supervised learning approach for predicting transcriptional cooperativity, compares favorably to alternative unsupervised methodologies, and can be applied to other genomic data integration tasks where high-quality gold-standard positive data are scarce.
几个转录因子(TFs)之间的转录协同性被认为是转录调控程序复杂性和精确性的主要机制。在此,我们提出一个贝叶斯网络框架,通过整合15种基因组特征的综合列表,在酿酒酵母中重建一个高可信度的全基因组转录协同性图谱。我们设计了一个贝叶斯网络结构来捕捉特征和转录因子协同性之间的主要相关性,并引入一个带有精心构建的金标准数据集的监督学习框架。这个框架使我们能够评估每种基因组特征的预测能力,验证我们的贝叶斯网络相较于其他方法的优越性能,并整合基因组特征以实现最佳的转录因子协同性预测。数据整合揭示了105个转录因子之间159种高可信度的预测协同关系,其中大多数随后通过文献检索得到验证。现有的和预测的转录协同性可根据基因组特征的组合模式分为三类,为不同类型的转录因子协同性提供了进一步的生物学见解。我们的方法是第一种用于预测转录协同性的监督学习方法,与其他无监督方法相比具有优势,并且可应用于高质量金标准阳性数据稀缺的其他基因组数据整合任务。
参考文献(0)
被引文献(0)
Inferring combinatorial regulation of transcription in silico.
DOI:
10.1093/nar/gki167
发表时间:
2005
期刊:
Nucleic acids research
影响因子:
14.9
作者:
Blüthgen N;Kiełbasa SM;Herzel H
通讯作者:
Herzel H
Interacting models of cooperative gene regulation
DOI:
10.1073/pnas.0407365101
发表时间:
2004-11-16
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Das, D;Banerjee, N;Zhang, MQ
通讯作者:
Zhang, MQ
Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms
DOI:
10.1007/s10142-007-0054-7
发表时间:
2007-10-01
期刊:
FUNCTIONAL & INTEGRATIVE GENOMICS
影响因子:
2.9
作者:
Borneman, Anthony R.;Zhang, Zhengdong D.;Snyder, Michael
通讯作者:
Snyder, Michael
Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae
DOI:
10.1093/nar/gkh978
发表时间:
2004-01-01
期刊:
NUCLEIC ACIDS RESEARCH
影响因子:
14.9
作者:
Chen, Y;Xu, D
通讯作者:
Xu, D
Prolinks: a database of protein functional linkages derived from coevolution.
DOI:
10.1186/gb-2004-5-5-r35
发表时间:
2004
期刊:
Genome biology
影响因子:
12.3
作者:
Bowers PM;Pellegrini M;Thompson MJ;Fierro J;Yeates TO;Eisenberg D
通讯作者:
Eisenberg D

数据更新时间:{{ references.updateTime }}

Xia Y
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓