喵ID:fn2GEq免责声明

车辆轨迹数据提取道路交叉口特征的决策树模型

基本信息

DOI:
10.11947/j.agcs.2019.20190011
发表时间:
2019
期刊:
测绘学报
影响因子:
--
通讯作者:
周校东
中科院分区:
其他
文献类型:
--
作者: 万子健;李连营;杨敏;周校东研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The vehicle trajectory data from multiple sources implies the latest road distribution information. Research on using trajectory data to extract road features is beneficial for the rapid establishment and update of basic road network data. The road network is composed of intersections and road lines connecting intersections, among which the identification of intersection features is the key to the generation of the entire road network. Due to the lack of a refined intersection identification model, the road network generated from trajectory data is prone to phenomena such as missed intersections and structural distortion. To address this problem, this paper proposes a method for extracting road intersections using trajectory data. Firstly, the changes in the geometric shapes and implicit dynamic characteristics of vehicle movement trajectories in intersection and non-intersection areas are analyzed. Then, a trajectory segment classification model is constructed using the decision tree method, and an extraction method for lane-changing trajectory segments in intersection areas is established in combination with a moving window-type trajectory line segmentation model. Finally, the trajectory segments in the intersection area are clustered according to the Hausdorff distance, and the center line is extracted to obtain a complete road intersection structure. Real vehicle trajectory lines are used as test data to verify the effectiveness of the method proposed in this paper.
众源车辆轨迹数据隐含最新的道路分布信息,研究利用轨迹数据提取道路特征有益于基础路网数据的快速建库与更新。道路网由交叉口和连接交叉口的道路线构成,其中交叉口特征识别是整个道路网生成的关键。由于缺乏精细的交叉口识别模型,轨迹数据生成的道路网容易出现路口遗漏、结构失真等现象。针对这一问题,本文提出一种利用轨迹数据提取道路交叉口的方法。首先,分析车辆在交叉口与非交叉口区域移动轨迹几何形态及隐含动力学特征的变化情形;然后,利用决策树方法构建轨迹片段分类模型,并结合移动开窗式的轨迹线剖分模型建立交叉口区域变道轨迹片段提取方法;最后,依据Hausdorff距离对交叉口区域轨迹片段进行聚类,并提取中心线获得完整的道路交叉口结构。采用真实的车辆轨迹线作为测试数据,验证了本文提出方法的有效性。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

周校东
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓