喵ID:feqnNH免责声明

Task and Motion Planning for Execution in the Real

真实执行的任务和运动规划

基本信息

DOI:
--
发表时间:
2024
影响因子:
7.8
通讯作者:
Lydia E. Kavraki
中科院分区:
计算机科学1区
文献类型:
--
作者: Tianyang Pan;Rahul Shome;Lydia E. Kavraki研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Task and motion planning represents a powerful set of hybrid planning methods that combine reasoning over discrete task domains and continuous motion generation. Traditional reasoning necessitates task domain models and enough information to ground actions to motion planning queries. Gaps in this knowledge often arise from sources like occlusion or imprecise modeling. This work generates task and motion plans that include actions cannot be fully grounded at planning time. During execution, such an action is handled by a provided human-designed or learned closed-loop behavior. Execution combines offline planned motions and online behaviors till reaching the task goal. Failures of behaviors are fed back as constraints to find new plans. Forty real-robot trials and motivating demonstrations are performed to evaluate the proposed framework and compare against state-of-the-art. Results show faster execution time, less number of actions, and more success in problems where diverse gaps arise. The experiment data is shared for researchers to simulate these settings. The work shows promise in expanding the applicable class of realistic partially grounded problems that robots can address.
任务与运动规划代表了一套强大的混合规划方法,它将离散任务领域的推理和连续运动生成相结合。传统推理需要任务领域模型以及足够的信息,以便将动作基于运动规划查询。这种知识的缺失常常源于遮挡或不精确建模等原因。这项工作生成的任务和运动规划包含在规划时无法完全基于实际情况的动作。在执行过程中,这样的动作由提供的人工设计或学习到的闭环行为来处理。执行过程将离线规划的运动和在线行为相结合,直至达到任务目标。行为的失败作为约束反馈回来,以寻找新的规划。进行了40次真实机器人试验和激励性演示,以评估所提出的框架,并与现有技术进行比较。结果显示,在出现各种知识缺失的问题中,执行时间更快、动作数量更少且成功率更高。实验数据已共享,供研究人员模拟这些设置。这项工作在扩展机器人能够处理的现实的部分基于实际情况的问题的适用类别方面显示出了前景。
参考文献(12)
被引文献(0)
Anytime Integrated Task and Motion Policies for Stochastic Environments
随机环境的随时集成任务和运动策略
DOI:
10.1109/icra40945.2020.9197574
发表时间:
2020
期刊:
IEEE International Conference on Robotics and Automation
影响因子:
0
作者:
Shah, Naman;Kala Vasudevan, Deepak;Kumar, Kislay;Kamojjhala, Pranav;Srivastava, Siddharth
通讯作者:
Srivastava, Siddharth
Simultaneously Learning Transferable Symbols and Language Groundings from Perceptual Data for Instruction Following
DOI:
10.15607/rss.2020.xvi.102
发表时间:
2020-07
期刊:
Robotics: Science and Systems XVI
影响因子:
0
作者:
N. Gopalan;Eric Rosen;G. Konidaris;Stefanie Tellex
通讯作者:
N. Gopalan;Eric Rosen;G. Konidaris;Stefanie Tellex
A General Task and Motion Planning Framework For Multiple Manipulators
DOI:
10.1109/iros51168.2021.9636119
发表时间:
2021-01-01
期刊:
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
影响因子:
0
作者:
Pan, Tianyang;Wells, Andrew M.;Kavraki, Lydia E.
通讯作者:
Kavraki, Lydia E.
Hardness of Motion Planning with Obstacle Uncertainty in Two Dimensions
二维障碍物不确定性运动规划的难度
DOI:
10.1177/0278364921992787
发表时间:
2021
期刊:
The International Journal of Robotics Research
影响因子:
0
作者:
Shimanuki, Luke;Axelrod, Brian
通讯作者:
Axelrod, Brian
OctoMap: an efficient probabilistic 3D mapping framework based on octrees
DOI:
10.1007/s10514-012-9321-0
发表时间:
2013-04-01
期刊:
AUTONOMOUS ROBOTS
影响因子:
3.5
作者:
Hornung, Armin;Wurm, Kai M.;Burgard, Wolfram
通讯作者:
Burgard, Wolfram

数据更新时间:{{ references.updateTime }}

Lydia E. Kavraki
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓