喵ID:eim2wN免责声明

单分子定位超分辨显微成像有机荧光探针的研究进展

基本信息

DOI:
10.11944/j.issn.1000-0518.2019.03.180249
发表时间:
2019
期刊:
应用化学
影响因子:
--
通讯作者:
杨志刚
中科院分区:
其他
文献类型:
--
作者: 潘文慧;李文;屈璟涵;叶懿霈;屈军乐;杨志刚研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

In the biomedical field, it is of great significance to conduct research on the precise positioning of micro-biological targets at the nanoscale level, and optical microscopic imaging technology provides a powerful tool for this. Limited by the optical diffraction limit, optical microscopic imaging technology has difficulty in resolving biological structures with a size below the diffraction limit (< 200 nm), and cannot directly obtain information about micro-biological structures, which hinders the further development of biomedicine. In recent years, with the emergence of nano-resolution microscopic imaging technology, the development of new fluorescent probes, the continuous development of imaging systems and equipment, and the in-depth combination of continuously improved imaging algorithms have promoted the research on microscopic targets with a size below the optical diffraction limit. Super-resolution fluorescence microscopic imaging based on single-molecule localization (SMLM), including photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), closely combines organic fluorescent probes with super-resolution optical microscopic imaging technology. The photophysical properties of fluorescent probes directly determine the quality of super-resolution imaging results. Therefore, designing fluorescent probes with different properties can achieve different super-resolution imaging of ultra-fine structures, providing a powerful tool for studying their biological functions. This article focuses on summarizing and reviewing aspects such as the principles based on SMLM, the design requirements of organic fluorescent probes, the types of fluorescent probes used for SMLM and their biological applications, points out the deficiencies in single-molecule localization imaging, and looks forward to its development direction, hoping to provide help in imaging theory and probe design for researchers interested in super-resolution imaging research or those who are new to this field.
在生物医学领域,对纳米尺寸级别的微小生物目标进行精确定位研究具有非常重要的意义,而光学显微成像技术为此提供了强有力的工具.光学显微成像技术受到光学衍射极限的限制,难以分辨尺寸在衍射极限( < 200 nm)以下的生物结构,无法直接获取微小生物结构信息,阻碍了生物医学的进一步发展.近年来,随着纳米分辨显微成像技术的出现,新型荧光探针的开发、成像系统与设备的不断发展及成像算法不断完善地深入结合,促进了光学衍射极限以下尺寸微观目标的研究.基于单分子定位的超分辨荧光显微成像( SMLM)包括光激活定位成像( PALM)与随机光学重构超分辨成像( STORM),将有机荧光探针与超分辨光学显微成像技术紧密结合在一起,荧光探针的光物理性质直接决定着超分辨成像结果的好坏.因此,设计不同性能的荧光探针可以实现超精细结构的不同超分辨成像,为研究其生物学功能提供了有力的工具.本文着重围绕基于SMLM的原理、有机荧光探针的设计要求、用于SMLM的荧光探针种类及其生物应用等方面进行总结综述,指出了单分子定位成像上存在的不足,并对其发展方向进行了展望,希望为对超分辨成像研究感兴趣或初涉该领域的研究者提供成像理论与探针设计方面的帮助.
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

活细胞线粒体比例荧光超分辨成像研究
批准号:
61875131
批准年份:
2018
资助金额:
63.0
项目类别:
面上项目
杨志刚
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓