喵ID:djcdtm免责声明

Exemplar-based human body super-resolution for surveillance camera systems

基本信息

DOI:
10.5220/0004686101150121
发表时间:
2014
期刊:
2014 International Conference on Computer Vision Theory and Applications (VISAPP)
影响因子:
--
通讯作者:
Kento Nishibori;Tomokazu Takahashi;Daisuke Deguchi;I. Ide;H. Murase
中科院分区:
其他
文献类型:
--
作者: Kento Nishibori;Tomokazu Takahashi;Daisuke Deguchi;I. Ide;H. Murase研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

In this paper, we propose an exemplar-based super-resolution method applied to a human body in a surveillance video. Since persons are usually captured as low-resolution images by a video surveillance system, it is sometimes necessary to perform detection and identification of persons from not only a human face but also from the human body appearance. The super-resolution for a human body image is difficult because the appearances of person images vary according to the color of clothing and the posture of persons. Thus, we focus on the high-frequency components that could restore the lost high-frequency components of the low-resolution image regardless to the variation of the clothing. Therefore, the purpose of the work presented in this paper is to apply the exemplar-based super-resolution using high-frequency components for a low-resolution human body image to generate a high-resolution human body image so that both computer systems and humans can identify persons more accurately. As a result of experiments, we confirmed the effectiveness of the proposed super-resolution method.
在本文中,我们提出了一种基于样本的超分辨率方法,该方法应用于监控视频中的人体。由于视频监控系统通常将人捕获为低分辨率图像,有时不仅需要从人脸,还需要从人体外观进行人员的检测和识别。人体图像的超分辨率是困难的,因为人物图像的外观会根据衣服的颜色和人的姿势而变化。因此,我们关注高频成分,这些高频成分能够恢复低分辨率图像丢失的高频成分,而不受衣服变化的影响。因此,本文所提出工作的目的是将基于高频成分的基于样本的超分辨率应用于低分辨率人体图像,以生成高分辨率人体图像,从而使计算机系统和人类都能更准确地识别人物。实验结果证实了所提出的超分辨率方法的有效性。
参考文献(18)
被引文献(4)

数据更新时间:{{ references.updateTime }}

Kento Nishibori;Tomokazu Takahashi;Daisuke Deguchi;I. Ide;H. Murase
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓