喵ID:c8Q5S6免责声明

Optimization of Random Feature Method in the High-Precision Regime

高精度范围内随机特征方法的优化

基本信息

DOI:
--
发表时间:
2024
期刊:
Communication on Applied Mathematics and Computation
影响因子:
--
通讯作者:
Yifei Sun
中科院分区:
文献类型:
--
作者: Jingrun Chen;Weinan E;Yifei Sun研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Machine learning has been widely used for solving partial differential equations (PDEs) in recent years, among which the random feature method (RFM) exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency. Potentially, the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods. Unlike the broader machine-learning research, which frequently targets tasks within the low-precision regime, our study focuses on the high-precision regime crucial for solving PDEs. In this work, we study this problem from the following aspects: (i) we analyze the coefficient matrix that arises in the RFM by studying the distribution of singular values; (ii) we investigate whether the continuous training causes the overfitting issue; (iii) we test direct and iterative methods as well as randomized methods for solving the optimization problem. Based on these results, we find that direct methods are superior to other methods if memory is not an issue, while iterative methods typically have low accuracy and can be improved by preconditioning to some extent.
近年来,机器学习已被广泛用于求解偏微分方程(PDEs),其中随机特征方法(RFM)具有谱精度,并且在精度和效率方面可与传统求解器相媲美。潜在地,RFM中的优化问题比传统方法中出现的问题更难解决。与更广泛的机器学习研究不同(其通常针对低精度领域内的任务),我们的研究侧重于对求解PDEs至关重要的高精度领域。在这项工作中,我们从以下几个方面研究这个问题:(i)通过研究奇异值的分布来分析RFM中出现的系数矩阵;(ii)研究连续训练是否会导致过拟合问题;(iii)测试用于解决优化问题的直接方法、迭代方法以及随机方法。基于这些结果,我们发现如果内存不是问题,直接方法优于其他方法,而迭代方法通常精度较低,并且在一定程度上可以通过预处理来改进。
参考文献(1)
被引文献(1)
Reconciling modern machine-learning practice and the classical bias-variance trade-off
DOI:
10.1073/pnas.1903070116
发表时间:
2019-08-06
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Belkin, Mikhail;Hsu, Daniel;Mandal, Soumik
通讯作者:
Mandal, Soumik

数据更新时间:{{ references.updateTime }}

Yifei Sun
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓