喵ID:bq5LJt免责声明

Total Recall via Keyqueries: A Case Study for Systematic Reviews

通过键查询进行全面回忆:系统评论的案例研究

基本信息

DOI:
--
发表时间:
2021
期刊:
影响因子:
--
通讯作者:
Paul Alexander
中科院分区:
文献类型:
--
作者: Paul Alexander研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Researchers conduct systematic reviews to gain and build a comprehensive un-derstanding of a studied (cid:28)eld. During the screening of documents, researchers aim for total recall to ensure that all relevant documents are covered in their systematic review. Creating a systematic review is time-consuming and can take several years. Systems for technology-assisted systematic reviews incorpo-rate user feedback, whether a document was relevant or not, to learn presenting more yet unknown potential relevant documents. We propose a system that automatically creates so-called keyqueries which rank the known relevant documents in the top results of a reference search engine. This keyquery approach is motivated by research on related work search, where keyqueries retrieve additional related work for a given set of documents. Therefore, we construct keyqueries for the documents labeled as relevant in the systematic review to identify new, potentially relevant documents. We compare our keyquery-based approach with four classical machine-learning approaches and the state-of-the-art approach on three simulated systematic reviews with biological research topics. The Evaluation shows that our keyquery-based approach outperforms our implementation of logistic regression and decision table, and is comparable to a random forest approach. The state-of-the-art and our naive Bayes approach both outperform our keyquery-based approach.
研究人员进行系统综述以获得并建立对所研究领域的全面理解。在文献筛选过程中,研究人员力求全面回忆,以确保系统综述涵盖所有相关文献。创建系统综述耗时且可能需要数年时间。技术辅助系统综述系统纳入用户反馈(即文献是否相关),以便学习呈现更多未知的潜在相关文献。我们提出一种系统,它能自动创建所谓的关键查询,这些关键查询能将已知相关文献在参考搜索引擎的结果顶部进行排序。这种关键查询方法是受相关工作搜索研究的启发,在相关工作搜索中,关键查询可为给定的一组文献检索额外的相关工作。因此,我们为系统综述中标记为相关的文献构建关键查询,以识别新的、潜在相关的文献。我们在三个具有生物学研究主题的模拟系统综述中,将我们基于关键查询的方法与四种经典机器学习方法以及最先进的方法进行比较。评估表明,我们基于关键查询的方法优于我们实现的逻辑回归和决策表方法,并且与随机森林方法相当。最先进的方法和我们的朴素贝叶斯方法都优于我们基于关键查询的方法。
参考文献(2)
被引文献(0)
Supporting Scholarly Search with Keyqueries
DOI:
10.1007/978-3-319-30671-1_37
发表时间:
2016-03
期刊:
Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval
影响因子:
0
作者:
Matthias Hagen;Anna Beyer;Tim Gollub;Kristof Komlossy;Benno Stein
通讯作者:
Matthias Hagen;Anna Beyer;Tim Gollub;Kristof Komlossy;Benno Stein
Context-Aware Document Term Weighting for Ad-Hoc Search
DOI:
10.1145/3366423.3380258
发表时间:
2020-04
期刊:
Proceedings of The Web Conference 2020
影响因子:
0
作者:
Zhuyun Dai;Jamie Callan
通讯作者:
Zhuyun Dai;Jamie Callan

数据更新时间:{{ references.updateTime }}

Paul Alexander
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓