喵ID:bmbCce免责声明

A Multistage Deep Transfer Learning Method for Machinery Fault Diagnostics Across Diverse Working Conditions and Devices

用于跨不同工作条件和设备进行机械故障诊断的多级深度迁移学习方法

基本信息

DOI:
10.1109/access.2020.2990739
发表时间:
2020-04
期刊:
影响因子:
3.9
通讯作者:
Yiwei Wang
中科院分区:
计算机科学3区
文献类型:
--
作者: Jian Zhou;Lianyu Zheng;Yiwei Wang研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Deep learning methods have promoted the vibration-based machinery fault diagnostics from.manual feature extraction to an end-to-end solution in the past few years and exhibited great success on.various diagnostics tasks. However, this success is based on the assumptions that sufcient labeled data.are available, and that the training and testing data are from the same distribution, which is normally.difcult to satisfy in practice. To overcome this issue, we propose a multistage deep convolutional transfer.learning method (MSDCTL) aimed at transferring vibration-based fault diagnostics capabilities to new.working conditions, experimental protocols and instrumented devices while avoiding the requirement for.new labeled fault data. MSDCTL is constructed as a one-dimensional convolutional neural network (CNN).with double-input structure that accepts raw data from different domains as input. The features from different.domains are automatically learned and a customized layer is designed to compute the distribution discrepancy.of the features. This discrepancy is further minimized such that the features learned from different domains.are domain-invariant. A multistage training strategy including pre-train and ne-tuning is proposed to.transfer the weight of a pre-trained model to new diagnostics tasks, which drastically reduces the requirement.on the amount of data in the new task. The proposed model is validated on three bearing fault datasets from.three institutes, including one from our own. We designed nine transfer tasks covering fault diagnostics.transfer across diverse working conditions and devices to test the effectiveness and robustness of our model..The results show high diagnostics accuracies on all the designed transfer tasks with strong robustness..Especially for transfer to new devices the improvement over state of the art is very signicant.
在过去几年中,深度学习方法推动了基于振动的机械故障诊断从手动特征提取向端到端解决方案发展,并在各种诊断任务中取得了巨大成功。然而,这种成功是基于有足够的标记数据可用,以及训练数据和测试数据来自相同分布的假设,而在实践中这些通常很难满足。为了克服这个问题,我们提出了一种多级深度卷积迁移学习方法(MSDCTL),旨在将基于振动的故障诊断能力迁移到新的工作条件、实验方案和仪器设备中,同时避免对新的标记故障数据的需求。MSDCTL被构建为一个具有双输入结构的一维卷积神经网络(CNN),它接受来自不同域的原始数据作为输入。来自不同域的特征被自动学习,并且设计了一个定制层来计算特征的分布差异。这种差异被进一步最小化,使得从不同域学习到的特征具有域不变性。提出了一种包括预训练和微调的多级训练策略,以将预训练模型的权重迁移到新的诊断任务中,这大大减少了对新任务中数据量的要求。所提出的模型在来自三个机构(包括我们自己的一个机构)的三个轴承故障数据集上进行了验证。我们设计了九个迁移任务,涵盖了不同工作条件和设备之间的故障诊断迁移,以测试我们模型的有效性和鲁棒性。结果显示,在所有设计的迁移任务上都有很高的诊断准确率,并且具有很强的鲁棒性。特别是对于迁移到新设备,与现有技术相比有非常显著的改进。
参考文献(46)
被引文献(22)
Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data
深度卷积迁移学习网络:一种无标签数据机器智能故障诊断新方法
DOI:
10.1109/tie.2018.2877090
发表时间:
2019-09-01
期刊:
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
影响因子:
7.7
作者:
Guo, Liang;Lei, Yaguo;Li, Naipeng
通讯作者:
Li, Naipeng
Performance Prediction Using High-Order Differential Mathematical Morphology Gradient Spectrum Entropy and Extreme Learning Machine
利用高阶微分数学形态学梯度谱熵和极限学习机进行性能预测
DOI:
10.1109/tim.2019.2948414
发表时间:
2020-07-01
期刊:
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
影响因子:
5.6
作者:
Zhao, Huimin;Liu, Haodong;Deng, Wu
通讯作者:
Deng, Wu
Knowledge Transfer for Rotary Machine Fault Diagnosis
旋转机械故障诊断的知识转移
DOI:
10.1109/jsen.2019.2949057
发表时间:
2020-08-01
期刊:
IEEE SENSORS JOURNAL
影响因子:
4.3
作者:
Yan, Ruqiang;Shen, Fei;Chen, Xuefeng
通讯作者:
Chen, Xuefeng
A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
DOI:
10.1016/j.neucom.2018.05.021
发表时间:
2018-10-08
期刊:
NEUROCOMPUTING
影响因子:
6
作者:
Li, Xiang;Zhang, Wei;Din, Qian
通讯作者:
Din, Qian
A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
基于卷积神经网络的齿轮箱状态监测特征学习与故障诊断方法
DOI:
10.1016/j.measurement.2017.07.017
发表时间:
2017-12-01
期刊:
MEASUREMENT
影响因子:
5.6
作者:
Jing, Luyang;Zhao, Ming;Xu, Xiaoqiang
通讯作者:
Xu, Xiaoqiang

数据更新时间:{{ references.updateTime }}

关联基金

基于深度学习的精密滚珠丝杠副服役性能退化过程状态评估及预测方法研究
批准号:
51805262
批准年份:
2018
资助金额:
25.0
项目类别:
青年科学基金项目
Yiwei Wang
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓