喵ID:blvf0i免责声明

Stochastic multiscale fracture analysis of three-dimensional functionally graded composites

基本信息

DOI:
10.1016/j.engfracmech.2010.09.006
发表时间:
2011-01-01
期刊:
Research article
影响因子:
--
通讯作者:
Arindam Chakraborty
中科院分区:
文献类型:
regular articles
作者: Sharif Rahman;Arindam Chakraborty研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

A new moment-modified polynomial dimensional decomposition (PDD) method is presented for stochastic multiscale fracture analysis of three-dimensional, particle-matrix, functionally graded materials (FGMs) subject to arbitrary boundary conditions. The method involves Fourier-polynomial expansions of component functions by orthonormal polynomial bases, an additive control variate in conjunction with Monte Carlo simulation for calculating the expansion coefficients, and a moment-modified random output to account for the effects of particle locations and geometry. A numerical verification conducted on a two-dimensional FGM reveals that the new method, notably the univariate PDD method, produces the same crude Monte Carlo results with a five-fold reduction in the computational effort. The numerical results from a three-dimensional, edge-cracked, FGM specimen under a mixed-mode deformation demonstrate that the statistical moments or probability distributions of crack-driving forces and the conditional probability of fracture initiation can be efficiently generated by the univariate PDD method. There exist significant variations in the probabilistic characteristics of the stress-intensity factors and fracture-initiation probability along the crack front. Furthermore, the results are insensitive to the subdomain size from concurrent multiscale analysis, which, if selected judiciously, leads to computationally efficient estimates of the probabilistic solutions.
提出了一种新的矩修正多项式维数分解(PDD)方法,用于在任意边界条件下对三维颗粒 - 基体功能梯度材料(FGMs)进行随机多尺度断裂分析。该方法包括通过正交多项式基对分量函数进行傅里叶 - 多项式展开,结合蒙特卡罗模拟的附加控制变量用于计算展开系数,以及一个矩修正随机输出以考虑颗粒位置和几何形状的影响。对二维FGM进行的数值验证表明,新方法,特别是单变量PDD方法,产生相同的粗略蒙特卡罗结果,但计算量减少了五倍。对一个在混合模式变形下的三维边缘裂纹FGM试样的数值结果表明,单变量PDD方法可以有效地生成裂纹驱动力的统计矩或概率分布以及断裂起始的条件概率。沿裂纹前沿,应力强度因子和断裂起始概率的概率特征存在显著变化。此外,结果对并发多尺度分析中的子域大小不敏感,如果明智地选择子域大小,将能高效地计算概率解。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Arindam Chakraborty
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓