喵ID:aEYulf免责声明

FlowTune: Practical Multi-armed Bandits in Boolean Optimization

基本信息

DOI:
10.1145/3400302.3415615
发表时间:
2020-11
期刊:
2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
影响因子:
--
通讯作者:
Cunxi Yu
中科院分区:
其他
文献类型:
--
作者: Cunxi Yu研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Recent years have seen increasing employment of decision intelligence in electronic design automation (EDA), which aims to reduce the manual efforts and boost the design closure process in modern toolflows. However, existing approaches either require a large number of labeled data for training or are limited in practical EDA toolflow integration due to computation overhead. This paper presents a generic end-to-end and high-performance domain-specific, multi-stage multi-armed bandit framework for Boolean logic optimization. This framework addresses optimization problems on a) And-Inv-Graphs (# nodes), b) Conjunction Normal Form (CNF) minimization (# clauses) for Boolean Satisfiability, c) post static timing analysis (STA) delay and area optimization for standard-cell technology mapping, and d) FPGA technology mapping for 6-in LUT architectures. Moreover, the proposed framework has been integrated with ABC [1], Yosys [2], VTR [3], and industrial tools. The experimental results demonstrate that our framework outperforms both hand-crafted flows [1] and ML explored flows [4], [5] in quality of results, and is orders of magnitude faster compared to ML-based approaches [4], [5].
近年来,电子设计自动化(EDA)中决策情报的就业越来越多,该智能旨在减少体力劳动并促进现代工具流中的设计封闭过程。但是,现有方法要么需要大量的标记数据进行培训,要么由于计算开销而受到实用的EDA工具流集成的限制。本文介绍了用于布尔逻辑优化的通用端到端和高性能域特异性,多阶段的多臂匪徒框架。该框架解决了a)和inv-graphs(#nodes),b)连词正常形式(cnf)最小化(#条款)的优化问题,以实现布尔值满意度,c)静态时序分析(STA)延迟和标准的面积延迟和面积优化 - 细胞技术映射和D)6英寸LUT体系结构的FPGA技术映射。此外,提议的框架已与ABC [1],Yosys [2],VTR [3]和工业工具集成在一起。实验结果表明,我们的框架的表现优于手工制作的流[1]和ML探索的结果[4],[5]的结果质量,并且与基于ML的方法相比[4],[5 ]。
参考文献(39)
被引文献(22)

数据更新时间:{{ references.updateTime }}

Cunxi Yu
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓