Research and clinical applications, such as microinjection and polar-body biopsy involve 3-D rotation of mammalian oocytes/embryos. In these cell manipulation tasks, the polar body of an embryo/oocyte must be made visible and properly oriented under optical microscopy. Cell rotation in conventional manual operation by skilled professionals is based on trial and error, such as through repeated vacuum aspiration and release. The randomness of this manual procedure, its poor reproducibility, and inconsistency across operators entail a systematic technique for automated, noninvasive, 3-D rotational control of single cells. This paper reports a system that tracks the polar body of mouse embryos in real time and controls multiple motion control devices to conduct automated 3-D rotational control of mouse embryos. Experimental results demonstrated the system's capability for polar-body orientation with a high success rate of 90%, an accuracy of 1.9 degrees, and an average speed of 22.8 s/cell (versus averagely 40 s/cell in manual operation).
研究和临床应用,比如显微注射和极体活检,涉及哺乳动物卵母细胞/胚胎的三维旋转。在这些细胞操作任务中,胚胎/卵母细胞的极体必须在光学显微镜下可见且方向正确。由熟练专业人员进行的传统手动操作中的细胞旋转是基于反复试验的,比如通过反复的真空抽吸和释放。这种手动操作的随机性、可重复性差以及操作人员之间的不一致性,需要一种针对单个细胞进行自动化、无创的三维旋转控制的系统技术。本文报道了一种能够实时追踪小鼠胚胎极体并控制多个运动控制设备对小鼠胚胎进行自动化三维旋转控制的系统。实验结果表明,该系统具有对极体定向的能力,成功率高达90%,精度为1.9度,平均速度为每个细胞22.8秒(而手动操作平均每个细胞需要40秒)。