喵ID:Ywekll免责声明

Speaker-independent automatic detection of pitch accent

与说话人无关的音高重音自动检测

基本信息

DOI:
10.21437/speechprosody.2004-120
发表时间:
2004
期刊:
Speech Prosody 2004
影响因子:
--
通讯作者:
Jennifer Cole
中科院分区:
文献类型:
--
作者: Yuexi Ren;Sung;Mark Hasegawa;Jennifer Cole研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

This paper presents a novel approach to the automatic detection of pitch accent in spoken English. The approach that we propose is based on a time-delay recursive neural network (TDRNN), which takes into account contextual information in two ways: (1) a delayed version of prosodic and spectral features serve as inputs which represent an explicit trajectory along time; and (2) recursions from the output layer and some hidden layers provide the contextual labeling information that reflects characteristics of pitch accentuation in spoken English. We apply the TDRNN to pitch accent detection in two forms. In the normal TDRNN, all of the prosodic and spectral features are used as an entire set in a single TDRNN. In the distributed TDRNN, the network consists of several TDRNNs each treating each prosodic feature as a single input. In addition, we propose a feature called spectral balance-based cepstral coefficient (SBCC) to capture the spectral characteristic of pitch accentuation. We used the Boston Radio News Corpus (BRNC) to conduct experiments on the speakerindependent detection of pitch accent. The experimental results showed that the automatic labels of pitch accent exhibited an average of 83.6% agreement with the hand labels.
本文提出了一种自动检测英语口语音高重音的新方法。我们提出的方法基于时延递归神经网络(TDRNN),它通过两种方式考虑语境信息:(1)韵律和频谱特征的延迟版本作为输入,代表了沿时间的明确轨迹;(2)来自输出层和一些隐藏层的递归提供了反映英语口语音高重音特征的语境标注信息。我们将TDRNN以两种形式应用于音高重音检测。在常规的TDRNN中,所有的韵律和频谱特征在单个TDRNN中作为一个整体集合使用。在分布式TDRNN中,网络由几个TDRNN组成,每个TDRNN将每个韵律特征作为单个输入。此外,我们提出了一种称为基于频谱平衡的倒谱系数(SBCC)的特征来捕捉音高重音的频谱特征。我们使用波士顿广播新闻语料库(BRNC)对音高重音的与说话人无关的检测进行了实验。实验结果表明,音高重音的自动标注与人工标注的平均一致性为83.6%。
参考文献(1)
被引文献(25)

数据更新时间:{{ references.updateTime }}

Jennifer Cole
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓