喵ID:Xewuh0免责声明

5G-Based Passive Radar Sensing for Human Activity Recognition Using Deep Learning

基于 5G 的无源雷达传感,利用深度学习进行人类活动识别

基本信息

DOI:
--
发表时间:
2024
期刊:
International Radar Conference
影响因子:
--
通讯作者:
Amitav Mukherjee
中科院分区:
文献类型:
--
作者: Manu Dwivedi;Ian Ellis L. Hulede;Oscar Venegas;Jonathan Ashdown;Amitav Mukherjee研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Wireless sensing and human activity recognition is an important research direction for next-generation wire-less communications systems as they evolve towards Integrated Sensing and Communications (ISAC) using a single waveform. Although gesture recognition is a well-studied field in WiFi systems, relatively few works have exploited the use of the Fifth Generation (5G) New Radio (NR) waveform for sensing and activity recognition. This paper explores the utilization of 5G NR as an illuminator of opportunity to perform passive radar detection and activity recognition. It proposes leveraging the synchronization signal block (SSB) signal of 5G, which is emitted periodically, for processing in passive coherent location (PCL) systems. We develop a signal processing pipeline involving processing of the SSBs that are transmitted at regular intervals to extract the Channel State Information (CSI) between the transmitter and the receiver. The CSI data which provides the characteristics of the radio channel is fed into a Deep Learning (DL) model to discern specific gestures. Experimental results with an over-the-air 5G signal collection campaign show excellent classification results across five categories of activities.
无线感知与人类活动识别是下一代无线通信系统的一个重要研究方向,因为它们朝着使用单一波形的集成感知与通信(ISAC)方向发展。尽管手势识别在WiFi系统中是一个研究得较为深入的领域,但利用第五代(5G)新空口(NR)波形进行感知和活动识别的工作相对较少。本文探讨了利用5G NR作为机会照射源来进行无源雷达探测和活动识别。它提出利用5G周期性发射的同步信号块(SSB)信号,在无源相干定位(PCL)系统中进行处理。我们开发了一个信号处理流程,包括对定期发射的SSB进行处理,以提取发射机和接收机之间的信道状态信息(CSI)。提供无线电信道特性的CSI数据被输入到一个深度学习(DL)模型中,以识别特定的手势。通过空中5G信号采集活动获得的实验结果表明,在五类活动中都取得了出色的分类结果。
参考文献(2)
被引文献(0)
An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing
DOI:
10.1109/jstsp.2021.3113120
发表时间:
2021-01-01
期刊:
IEEE Journal of Selected Topics in Signal Processing
影响因子:
7.5
作者:
Zhang, J. Andrew;Fan Liu;Petropulu, Athina
通讯作者:
Petropulu, Athina
MultiTrack: Multi-User Tracking and Activity Recognition Using Commodity WiFi
DOI:
10.1145/3290605.3300766
发表时间:
2019-01-01
期刊:
CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS
影响因子:
0
作者:
Tan, Sheng;Zhang, Linghan;Yang, Jie
通讯作者:
Yang, Jie

数据更新时间:{{ references.updateTime }}

Amitav Mukherjee
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓