喵ID:XNYpjv免责声明

Local network topology in human protein interaction data predicts functional association.

基本信息

DOI:
10.1371/journal.pone.0006410
发表时间:
2009-07-29
期刊:
影响因子:
3.7
通讯作者:
Liang S
中科院分区:
综合性期刊3区
文献类型:
Journal Article
作者: Li H;Liang S研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The use of high-throughput techniques to generate large volumes of protein-protein interaction (PPI) data has increased the need for methods that systematically and automatically suggest functional relationships among proteins. In a yeast PPI network, previous work has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional association. In this study we improved the prediction scheme by developing a new algorithm and applied it on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting function-associated protein pairs. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as benchmarks to compare and evaluate the function relevance. The application of our algorithms to human PPI data yielded 4,233 significant functional associations among 1,754 proteins. Further functional comparisons between them allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made functional inferences from detailed analysis on one subcluster highly enriched in the TGF-β signaling pathway (P<10−50). Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotation in this post-genomic era.
高通量技术用于产生大量蛋白质 - 蛋白质相互作用(PPI)数据,这增加了对系统地且自动地提示蛋白质之间功能关系的方法的需求。在酵母PPI网络中,先前的研究表明,局部连接拓扑结构,特别是对于两个具有异常多共同邻居的蛋白质,能够预测功能关联。在本研究中,我们通过开发一种新算法改进了预测方案,并将其应用于人类PPI网络以进行全基因组功能推断。我们使用新算法来测量并减少枢纽蛋白对检测功能相关蛋白对的影响。我们使用基因本体论(GO)和京都基因与基因组百科全书(KEGG)的注释作为基准来比较和评估功能相关性。将我们的算法应用于人类PPI数据,在1754个蛋白质中产生了4233个显著的功能关联。对它们之间进一步的功能比较使我们能够为274个蛋白质指定466个KEGG通路注释,为114个蛋白质指定123个GO注释,KEGG的估计错误发现率<21%,GO的估计错误发现率<30%。我们根据功能关联对1729个蛋白质进行聚类,并通过对一个在转化生长因子 - β信号通路中高度富集的子聚类(P < 10⁻⁵⁰)的详细分析进行功能推断。对另外四个子聚类的分析也表明在六个信号通路中可能存在新的参与者,值得进一步进行实验研究。我们的研究清晰地洞察了基于共同邻居的预测方案,并为这个后基因组时代的大规模功能注释提供了一种可靠的方法。
参考文献(0)
被引文献(0)
Whole-genome annotation by using evidence integration in functional-linkage networks
DOI:
10.1073/pnas.0307326101
发表时间:
2004-03-02
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Karaoz, U;Murali, TM;Kasif, S
通讯作者:
Kasif, S
Lethality and centrality in protein networks
DOI:
10.1038/35075138
发表时间:
2001-05-03
期刊:
NATURE
影响因子:
64.8
作者:
Jeong, H;Mason, SP;Oltvai, ZN
通讯作者:
Oltvai, ZN
Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot
DOI:
10.1016/j.ydbio.2003.08.011
发表时间:
2003-12-01
期刊:
DEVELOPMENTAL BIOLOGY
影响因子:
2.7
作者:
Laurikkala, J;Kassai, Y;Itoh, N
通讯作者:
Itoh, N
Development and implementation of an algorithm for detection of protein complexes in large interaction networks
DOI:
10.1186/1471-2105-7-207
发表时间:
2006-04-14
期刊:
BMC BIOINFORMATICS
影响因子:
3
作者:
Altaf-Ul-Amin, Md;Shinbo, Yoko;Kanaya, Shigehiko
通讯作者:
Kanaya, Shigehiko
THE 2-HYBRID SYSTEM - A METHOD TO IDENTIFY AND CLONE GENES FOR PROTEINS THAT INTERACT WITH A PROTEIN OF INTEREST
DOI:
10.1073/pnas.88.21.9578
发表时间:
1991-11-01
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
CHIEN, CT;BARTEL, PL;FIELDS, S
通讯作者:
FIELDS, S

数据更新时间:{{ references.updateTime }}

关联基金

Genome-wide Identification of Minor Histocompatibility Antigens
批准号:
8217243
批准年份:
2008
资助金额:
14.69
项目类别:
Liang S
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓