喵ID:XN0ev9免责声明

Suppressing interferences of EIT on synchronous recording EEG based on comb filter for seizure detection.

基于梳状滤波器抑制EIT对同步记录脑电图癫痫发作检测的干扰

基本信息

DOI:
10.3389/fneur.2022.1070124
发表时间:
2022
影响因子:
3.4
通讯作者:
Shi, Xuetao
中科院分区:
医学3区
文献类型:
Journal Article
作者: Wang, Lei;Zhu, Wenjing;Wang, Rong;Li, Weichen;Liang, Guohua;Ji, Zhenyu;Dong, Xiuzhen;Shi, Xuetao研究方向: Neurosciences & NeurologyMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

The purpose of this study was to eliminate the interferences of electrical impedance tomography (EIT) on synchronous recording electroencephalography (EEG) for seizure detection. The simulated EIT signal generated by COMSOL Multiphysics was superimposed on the clinical EEG signal obtained from the CHB-MIT Scalp EEG Database, and then the spectrum features of superimposed mixed signals were analyzed. According to the spectrum analysis, in addition to high-frequency interference at 51.2 kHz related to the drive current, there was also low-frequency interference caused by switching of electrode pairs, which were used to inject drive current. A low pass filter and a comb filter were used to suppress the high-frequency interference and low-frequency interference, respectively. Simulation results suggested the low-pass filter and comb filter working together effectively filtered out the interference of EIT on EEG in the process of synchronous monitoring. As a result, the normal EEG and epileptic EEG could be recognized effectively. Pearson correlation analysis further confirmed the interference of EIT on EEG was effectively suppressed. This study provides a simple and effective interference suppression method for the synchronous monitoring of EIT and EEG, which could be served as a reference for the synchronous monitoring of EEG and other medical electromagnetic devices.
本研究旨在消除电阻抗断层成像(EIT)对同步记录脑电图(EEG)用于癫痫发作检测的干扰。 由COMSOL Multiphysics生成的模拟EIT信号叠加在从CHB - MIT头皮脑电图数据库获取的临床脑电图信号上,然后分析叠加混合信号的频谱特征。根据频谱分析,除了与驱动电流相关的51.2 kHz高频干扰外,还存在由用于注入驱动电流的电极对切换引起的低频干扰。分别使用低通滤波器和梳状滤波器来抑制高频干扰和低频干扰。仿真结果表明,低通滤波器和梳状滤波器共同作用有效地滤除了同步监测过程中EIT对EEG的干扰。 因此,可以有效识别正常脑电图和癫痫脑电图。皮尔逊相关性分析进一步证实EIT对EEG的干扰得到了有效抑制。 本研究为EIT和EEG的同步监测提供了一种简单有效的干扰抑制方法,可为脑电图与其他医用电磁设备的同步监测提供参考。
参考文献(57)
被引文献(0)
Cost-Effectiveness of Advanced Imaging Technologies in the Presurgical Workup of Epilepsy
DOI:
10.1177/1535759719894307
发表时间:
2020-01-07
期刊:
EPILEPSY CURRENTS
影响因子:
3.6
作者:
Kwon, Churl-Su;Chang, Edward F.;Jette, Nathalie
通讯作者:
Jette, Nathalie
Role of concordance between ictal-subtracted SPECT and PET in predicting long-term outcomes after epilepsy surgery
DOI:
10.1016/j.eplepsyres.2014.09.024
发表时间:
2014-12-01
期刊:
EPILEPSY RESEARCH
影响因子:
2.2
作者:
Chandra, P. S.;Vaghania, Gaurang;Tripathi, Manjari
通讯作者:
Tripathi, Manjari
Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient
DOI:
10.1002/asi.10242
发表时间:
2003-04-01
期刊:
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
影响因子:
0
作者:
Ahlgren, P;Jarneving, B;Rousseau, R
通讯作者:
Rousseau, R
Enhancement of the Comb Filtering Selectivity Using Iterative Moving Average for Periodic Waveform and Harmonic Elimination.
DOI:
10.1155/2018/7901502
发表时间:
2018
期刊:
Journal of healthcare engineering
影响因子:
0
作者:
Ferreira JL;Wu Y;Aarts RM
通讯作者:
Aarts RM
PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals
DOI:
10.1161/01.cir.101.23.e215
发表时间:
2000-06-13
期刊:
CIRCULATION
影响因子:
37.8
作者:
Goldberger, AL;Amaral, LAN;Stanley, HE
通讯作者:
Stanley, HE

数据更新时间:{{ references.updateTime }}

关联基金

用于难治性癫痫发作预测的电阻抗成像新方法研究
批准号:
51907162
批准年份:
2019
资助金额:
27.0
项目类别:
青年科学基金项目
Shi, Xuetao
通讯地址:
Fourth Mil Med Univ, Sch Biomed Engn, Dept Med Elect Engn, Xian, Peoples R China
所属机构:
Fourth Mil Med UnivnAir Force Military Medical University
电子邮件地址:
xiuzhendong@fmmu.edu.cn
通讯地址历史:
Northwestern Polytech Univ, Inst Med Res, Xian, Peoples R China
所属机构
Northwestern Polytech Univ
Northwestern Polytechnical University
Northwest Univ, Sch Life Sci, Xian, Peoples R China
所属机构
Northwest Univ
Northwest University Xi'an
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓