喵ID:WcCN2B免责声明

Prediction of lncRNA-disease association based on a Laplace normalized random walk with restart algorithm on heterogeneous networks.

基于异构网络上拉普拉斯归一化随机游走和重启算法的 lncRNA-疾病关联预测。

基本信息

DOI:
10.1186/s12859-021-04538-1
发表时间:
2022-01-04
影响因子:
3
通讯作者:
He PA
中科院分区:
生物学4区
文献类型:
Journal Article
作者: Wang L;Shang M;Dai Q;He PA研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

More and more evidence showed that long non-coding RNAs (lncRNAs) play important roles in the development and progression of human sophisticated diseases. Therefore, predicting human lncRNA-disease associations is a challenging and urgently task in bioinformatics to research of human sophisticated diseases. In the work, a global network-based computational framework called as LRWRHLDA were proposed which is a universal network-based method. Firstly, four isomorphic networks include lncRNA similarity network, disease similarity network, gene similarity network and miRNA similarity network were constructed. And then, six heterogeneous networks include known lncRNA-disease, lncRNA-gene, lncRNA-miRNA, disease-gene, disease-miRNA, and gene-miRNA associations network were applied to design a multi-layer network. Finally, the Laplace normalized random walk with restart algorithm in this global network is suggested to predict the relationship between lncRNAs and diseases. The ten-fold cross validation is used to evaluate the performance of LRWRHLDA. As a result, LRWRHLDA achieves an AUC of 0.98402, which is higher than other compared methods. Furthermore, LRWRHLDA can predict isolated disease-related lnRNA (isolated lnRNA related disease). The results for colorectal cancer, lung adenocarcinoma, stomach cancer and breast cancer have been verified by other researches. The case studies indicated that our method is effective. The online version contains supplementary material available at 10.1186/s12859-021-04538-1.
越来越多的证据表明,长链非编码RNA(lncRNAs)在人类复杂疾病的发生和发展中起着重要作用。因此,预测人类lncRNA - 疾病关联是生物信息学中研究人类复杂疾病的一项具有挑战性且紧迫的任务。 在这项工作中,提出了一种基于全局网络的计算框架,称为LRWRHLDA,它是一种通用的基于网络的方法。首先,构建了四个同构网络,包括lncRNA相似性网络、疾病相似性网络、基因相似性网络和miRNA相似性网络。然后,应用六个异构网络,包括已知的lncRNA - 疾病、lncRNA - 基因、lncRNA - miRNA、疾病 - 基因、疾病 - miRNA和基因 - miRNA关联网络来设计一个多层网络。最后,建议在这个全局网络中使用拉普拉斯归一化随机游走重启动算法来预测lncRNAs与疾病之间的关系。 采用十折交叉验证来评估LRWRHLDA的性能。结果,LRWRHLDA的AUC达到0.98402,高于其他对比方法。此外,LRWRHLDA能够预测孤立的疾病相关lnRNA(孤立的lnRNA相关疾病)。对结直肠癌、肺腺癌、胃癌和乳腺癌的研究结果已被其他研究证实。案例研究表明我们的方法是有效的。 在线版本包含补充材料,可在10.1186/s12859 - 021 - 04538 - 1获取。
参考文献(0)
被引文献(0)
Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.
DOI:
10.1038/nature08975
发表时间:
2010-04-15
期刊:
Nature
影响因子:
64.8
作者:
通讯作者:
WGRCMF: A Weighted Graph Regularized Collaborative Matrix Factorization Method for Predicting Novel LncRNA-Disease Associations
WGRCMF:用于预测新型 LncRNA 疾病关联的加权图正则化协作矩阵分解方法
DOI:
10.1109/jbhi.2020.2985703
发表时间:
2021-01-01
期刊:
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
影响因子:
7.7
作者:
Liu, Jin-Xing;Cui, Zhen;Kong, Xiang-Zhen
通讯作者:
Kong, Xiang-Zhen
Multi-Label Fusion Collaborative Matrix Factorization for Predicting LncRNA-Disease Associations
DOI:
10.1109/jbhi.2020.2988720
发表时间:
2021-03-01
期刊:
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
影响因子:
7.7
作者:
Gao, Ming-Ming;Cui, Zhen;Liu, Jin-Xing
通讯作者:
Liu, Jin-Xing
starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data.
starBase v2.0:从大规模 CLIP-Seq 数据中解码 miRNA-ceRNA、miRNA-ncRNA 和蛋白质-RNA 相互作用网络
DOI:
10.1093/nar/gkt1248
发表时间:
2014-01
期刊:
Nucleic acids research
影响因子:
14.9
作者:
Li JH;Liu S;Zhou H;Qu LH;Yang JH
通讯作者:
Yang JH
DSCMF: prediction of LncRNA-disease associations based on dual sparse collaborative matrix factorization.
DSCMF:基于对偶稀疏协作矩阵分解的 LncRNA-疾病关联预测
DOI:
10.1186/s12859-020-03868-w
发表时间:
2021-05-12
期刊:
BMC bioinformatics
影响因子:
3
作者:
Liu JX;Gao MM;Cui Z;Gao YL;Li F
通讯作者:
Li F

数据更新时间:{{ references.updateTime }}

He PA
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓