喵ID:WRxLmv免责声明

Nonlocal Image Restoration With Bilateral Variance Estimation: A Low-Rank Approach

使用双边方差估计的非局部图像恢复:一种低阶方法

基本信息

DOI:
10.1109/tip.2012.2221729
发表时间:
2013-02-01
影响因子:
10.6
通讯作者:
Li, Xin
中科院分区:
计算机科学1区
文献类型:
Article
作者: Dong, Weisheng;Shi, Guangming;Li, Xin研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Simultaneous sparse coding (SSC) or nonlocal image representation has shown great potential in various low-level vision tasks, leading to several state-of-the-art image restoration techniques, including BM3D and LSSC. However, it still lacks a physically plausible explanation about why SSC is a better model than conventional sparse coding for the class of natural images. Meanwhile, the problem of sparsity optimization, especially when tangled with dictionary learning, is computationally difficult to solve. In this paper, we take a low-rank approach toward SSC and provide a conceptually simple interpretation from a bilateral variance estimation perspective, namely that singular-value decomposition of similar packed patches can be viewed as pooling both local and nonlocal information for estimating signal variances. Such perspective inspires us to develop a new class of image restoration algorithms called spatially adaptive iterative singular-value thresholding (SAIST). For noise data, SAIST generalizes the celebrated BayesShrink from local to nonlocal models; for incomplete data, SAIST extends previous deterministic annealing-based solution to sparsity optimization through incorporating the idea of dictionary learning. In addition to conceptual simplicity and computational efficiency, SAIST has achieved highly competent (often better) objective performance compared to several state-of-the-art methods in image denoising and completion experiments. Our subjective quality results compare favorably with those obtained by existing techniques, especially at high noise levels and with a large amount of missing data.
同时稀疏编码(SSC)或非局部图像表示在各种低级视觉任务中显示出巨大潜力,催生了多种先进的图像恢复技术,包括BM3D和LSSC。然而,对于自然图像类别,它仍然缺乏关于为什么SSC比传统稀疏编码是更好的模型的合理物理解释。同时,稀疏性优化问题,特别是当与字典学习交织在一起时,在计算上难以解决。在本文中,我们对SSC采用低秩方法,并从双边方差估计的角度提供了一个概念上简单的解释,即相似组合块的奇异值分解可被视为汇集局部和非局部信息以估计信号方差。这种视角启发我们开发了一类新的图像恢复算法,称为空间自适应迭代奇异值阈值法(SAIST)。对于噪声数据,SAIST将著名的贝叶斯收缩从局部模型推广到非局部模型;对于不完整数据,SAIST通过纳入字典学习的思想,将先前基于确定性退火的稀疏性优化解决方案进行了扩展。除了概念简单和计算高效外,在图像去噪和补全实验中,与几种先进的方法相比,SAIST取得了非常出色(通常更好)的客观性能。我们的主观质量结果与现有技术获得的结果相比具有优势,特别是在高噪声水平和大量数据缺失的情况下。
参考文献(61)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Li, Xin
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓