喵ID:WLBTJM免责声明

Discriminative Localized Sparse Approximations for Mass Characterization in Mammograms.

基本信息

DOI:
10.3389/fonc.2021.725320
发表时间:
2021
影响因子:
4.7
通讯作者:
Harris C
中科院分区:
医学3区
文献类型:
Journal Article
作者: Makrogiannis S;Zheng K;Harris C研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The most common form of cancer among women in both developed and developing countries is breast cancer. The early detection and diagnosis of this disease is significant because it may reduce the number of deaths caused by breast cancer and improve the quality of life of those effected. Computer-aided detection (CADe) and computer-aided diagnosis (CADx) methods have shown promise in recent years for aiding in the human expert reading analysis and improving the accuracy and reproducibility of pathology results. One significant application of CADe and CADx is for breast cancer screening using mammograms. In image processing and machine learning research, relevant results have been produced by sparse analysis methods to represent and recognize imaging patterns. However, application of sparse analysis techniques to the biomedical field is challenging, as the objects of interest may be obscured because of contrast limitations or background tissues, and their appearance may change because of anatomical variability. We introduce methods for label-specific and label-consistent dictionary learning to improve the separation of benign breast masses from malignant breast masses in mammograms. We integrated these approaches into our Spatially Localized Ensemble Sparse Analysis (SLESA) methodology. We performed 10- and 30-fold cross validation (CV) experiments on multiple mammography datasets to measure the classification performance of our methodology and compared it to deep learning models and conventional sparse representation. Results from these experiments show the potential of this methodology for separation of malignant from benign masses as a part of a breast cancer screening workflow.
在发达国家和发展中国家,女性中最常见的癌症形式是乳腺癌。这种疾病的早期检测和诊断意义重大,因为它可能减少乳腺癌导致的死亡人数,并提高受影响者的生活质量。近年来,计算机辅助检测(CADe)和计算机辅助诊断(CADx)方法在辅助人类专家解读分析以及提高病理结果的准确性和可重复性方面显示出了良好的前景。CADe和CADx的一个重要应用是利用乳房X光检查进行乳腺癌筛查。在图像处理和机器学习研究中,稀疏分析方法在表示和识别成像模式方面已经产生了相关成果。然而,将稀疏分析技术应用于生物医学领域具有挑战性,因为感兴趣的对象可能由于对比度限制或背景组织而被遮挡,并且它们的外观可能由于解剖结构的变异性而改变。我们引入了针对特定标签和标签一致的字典学习方法,以提高乳房X光片中乳腺良性肿块和恶性肿块的区分能力。我们将这些方法整合到我们的空间局部集成稀疏分析(SLESA)方法中。我们在多个乳房X光检查数据集上进行了10折和30折交叉验证(CV)实验,以衡量我们方法的分类性能,并将其与深度学习模型和传统的稀疏表示进行比较。这些实验的结果显示了这种方法作为乳腺癌筛查工作流程的一部分,在区分恶性肿块和良性肿块方面的潜力。
参考文献(0)
被引文献(0)
Deep Convolutional Neural Networks for breast cancer screening
DOI:
10.1016/j.cmpb.2018.01.011
发表时间:
2018-04-01
期刊:
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
影响因子:
6.1
作者:
Chougrad, Hiba;Zouaki, Hamid;Alheyane, Omar
通讯作者:
Alheyane, Omar
Mammogram segmentation using multi-atlas deformable registration
DOI:
10.1016/j.compbiomed.2019.06.001
发表时间:
2019-07-01
期刊:
COMPUTERS IN BIOLOGY AND MEDICINE
影响因子:
7.7
作者:
Sharma, Manish Kumar;Jas, Mainak;Mukhopadhyay, Sudipta
通讯作者:
Mukhopadhyay, Sudipta
Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
DOI:
10.1117/1.jmi.3.3.034501
发表时间:
2016-07-01
期刊:
JOURNAL OF MEDICAL IMAGING
影响因子:
2.4
作者:
Huynh, Benjamin Q.;Li, Hui;Giger, Maryellen L.
通讯作者:
Giger, Maryellen L.
Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding for Biomedical Applications.
DOI:
10.1109/tpami.2017.2656884
发表时间:
2018-05
期刊:
IEEE transactions on pattern analysis and machine intelligence
影响因子:
23.6
作者:
Chang H;Han J;Zhong C;Snijders AM;Mao JH
通讯作者:
Mao JH
Characterizing Architectural Distortion in Mammograms by Linear Saliency
DOI:
10.1007/s10916-016-0672-5
发表时间:
2017-02-01
期刊:
JOURNAL OF MEDICAL SYSTEMS
影响因子:
5.3
作者:
Narvaez, Fabian;Alvarez, Jorge;Romero, Eduardo
通讯作者:
Romero, Eduardo

数据更新时间:{{ references.updateTime }}

关联基金

Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
批准号:
10663229
批准年份:
2015
资助金额:
10.95
项目类别:
Harris C
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓