喵ID:WC5CR4免责声明

Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties

基本信息

DOI:
10.1063/5.0016020
发表时间:
2020-06
期刊:
The Journal of chemical physics
影响因子:
--
通讯作者:
Paul Sinz;M. Swift;Xavier Brumwell;Jialin Liu;K. Kim;Y. Qi;M. Hirn
中科院分区:
其他
文献类型:
--
作者: Paul Sinz;M. Swift;Xavier Brumwell;Jialin Liu;K. Kim;Y. Qi;M. Hirn研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The dream of machine learning in materials science is for a model to learn the underlying physics of an atomic system, allowing it to move beyond the interpolation of the training set to the prediction of properties that were not present in the original training data. In addition to advances in machine learning architectures and training techniques, achieving this ambitious goal requires a method to convert a 3D atomic system into a feature representation that preserves rotational and translational symmetries, smoothness under small perturbations, and invariance under re-ordering. The atomic orbital wavelet scattering transform preserves these symmetries by construction and has achieved great success as a featurization method for machine learning energy prediction. Both in small molecules and in the bulk amorphous LiαSi system, machine learning models using wavelet scattering coefficients as features have demonstrated a comparable accuracy to density functional theory at a small fraction of the computational cost. In this work, we test the generalizability of our LiαSi energy predictor to properties that were not included in the training set, such as elastic constants and migration barriers. We demonstrate that statistical feature selection methods can reduce over-fitting and lead to remarkable accuracy in these extrapolation tasks.
材料科学中机器学习的梦想是让一个模型学习原子系统的基本物理原理,使其能够超越对训练集的插值,预测原始训练数据中未出现的性质。除了机器学习架构和训练技术的进步之外,要实现这一宏伟目标,需要一种将三维原子系统转换为一种特征表示的方法,该特征表示要保留旋转和平移对称性、在小扰动下的平滑性以及在重新排序下的不变性。原子轨道小波散射变换通过构造保留了这些对称性,并作为机器学习能量预测的一种特征化方法取得了巨大成功。在小分子以及块状非晶态LiαSi系统中,使用小波散射系数作为特征的机器学习模型在计算成本仅为很小一部分的情况下,已展示出与密度泛函理论相当的准确性。在这项工作中,我们测试了我们的LiαSi能量预测器对训练集中未包含的性质(如弹性常数和迁移势垒)的泛化能力。我们证明了统计特征选择方法可以减少过拟合,并在这些外推任务中导致显著的准确性。
参考文献(59)
被引文献(10)

数据更新时间:{{ references.updateTime }}

Paul Sinz;M. Swift;Xavier Brumwell;Jialin Liu;K. Kim;Y. Qi;M. Hirn
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓