喵ID:VtNvbq免责声明

Linearly involved generalized Moreau enhanced models and their proximal splitting algorithm under overall convexity condition

基本信息

DOI:
10.1088/1361-6420/ab551e
发表时间:
2019-10
影响因子:
2.1
通讯作者:
Jiro Abe;M. Yamagishi;I. Yamada
中科院分区:
数学2区
文献类型:
--
作者: Jiro Abe;M. Yamagishi;I. Yamada研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The convex envelopes of the direct discrete measures, for the sparsity of vectors or for the low-rankness of matrices, have been utilized extensively as practical penalties in order to compute a globally optimal solution of the corresponding regularized least-squares models. Motivated mainly by the ideas in Zhang (2010 Ann. Stat. 38 894–942; Selesnick 2017 IEEE Trans. Signal Process. 65 4481–94; Yin et al 2019 IEEE Trans. Signal Process. 67 2595–607) to exploit nonconvex penalties in the regularized least-squares models without losing their overall convexities, this paper presents the linearly involved generalized Moreau enhanced (LiGME) model as a unified extension of such utilizations of nonconvex penalties. The proposed model can admit multiple nonconvex penalties without losing its overall convexity and thus is applicable to much broader scenarios in the sparsity-rank-aware signal processing. Under the general overall-convexity condition of the LiGME model, we also present a novel proximal splitting type algorithm of guaranteed convergence to a globally optimal solution. Numerical experiments in typical examples of the sparsity-rank-aware signal processing demonstrate the effectiveness of the LiGME models and the proposed proximal splitting algorithm.
对于向量的稀疏性或矩阵的低秩性,直接离散测度的凸包已被广泛用作实际的惩罚项,以便计算相应正则化最小二乘模型的全局最优解。主要受Zhang(2010 Ann. Stat. 38 894–942;Selesnick 2017 IEEE Trans. Signal Process. 65 4481–94;Yin等人2019 IEEE Trans. Signal Process. 67 2595–607)中在正则化最小二乘模型中利用非凸惩罚项而不损失其整体凸性的思想启发,本文提出了线性相关广义莫罗增强(LiGME)模型,作为此类非凸惩罚项应用的统一扩展。所提出的模型可以容纳多个非凸惩罚项而不损失其整体凸性,因此适用于稀疏 - 秩感知信号处理中更广泛的场景。在LiGME模型的一般整体凸性条件下,我们还提出了一种新的近端分裂型算法,该算法保证收敛到全局最优解。在稀疏 - 秩感知信号处理的典型示例中的数值实验证明了LiGME模型和所提出的近端分裂算法的有效性。
参考文献(78)
被引文献(20)

数据更新时间:{{ references.updateTime }}

Jiro Abe;M. Yamagishi;I. Yamada
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓