Tuning metal–support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure–activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal–support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure–activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt–H/Pt–OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.
Insights into the rational design of single-atom metal catalysts remains obscure in heterogeneous catalysis. Here, the authors establish the atomic-level structure–activity relationship for a wide-pH-range hydrogen evolution reaction through the electronic metal–support interaction modulation.
调节金属 - 载体相互作用被认为是调节负载型金属催化剂的电子结构和催化活性的有效方法。在原子水平上,在多相催化中对结构 - 活性关系的理解仍然不清楚,例如水(碱性)或水合氢离子(酸性)转化为氢气(析氢反应,HER)。在此,我们揭示了通过金属 - 载体电子相互作用对单原子Pt催化剂氧化态的精细控制显著调节了酸性或碱性HER中的催化活性。结合详细的光谱和电化学表征,通过将酸性/碱性HER活性与单原子Pt的平均氧化态以及Pt - H/Pt - OH相互作用相关联,建立了结构 - 活性关系。这项研究阐明了对酸性和碱性HER在原子水平上的机理理解,并进一步为高性能单原子催化剂的合理设计提供了指导原则。
在多相催化中,对单原子金属催化剂合理设计的见解仍然不清楚。在此,作者通过金属 - 载体电子相互作用的调节,建立了宽pH范围析氢反应的原子水平结构 - 活性关系。