喵ID:VMqjwm免责声明

DETERRENT: Knowledge Guided Graph Attention Network for Detecting Healthcare Misinformation

基本信息

DOI:
10.1145/3394486.3403092
发表时间:
2020-01-01
期刊:
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING
影响因子:
--
通讯作者:
Lee, Dongwon
中科院分区:
其他
文献类型:
Proceedings Paper
作者: Cui, Limeng;Seo, Haeseung;Lee, Dongwon研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

To provide accurate and explainable misinformation detection, it is often useful to take an auxiliary source (e.g., social context and knowledge base) into consideration. Existing methods use social contexts such as users' engagements as complementary information to improve detection performance and derive explanations. However, due to the lack of sufficient professional knowledge, users seldom respond to healthcare information, which makes these methods less applicable. In this work, to address these shortcomings, we propose a novel knowledge guided graph attention network for detecting health misinformation better. Our proposal, named as DETERRENT, leverages on the additional information from medical knowledge graph by propagating information along with the network, incorporates a Medical Knowledge Graph and an Article-Entity Bipartite Graph, and propagates the node embeddings through Knowledge Paths. In addition, an attention mechanism is applied to calculate the importance of entities to each article, and the knowledge guided article embeddings are used for misinformation detection. DETERRENT addresses the limitation on social contexts in the healthcare domain and is capable of providing useful explanations for the results of detection. Empirical validation using two real-world datasets demonstrated the effectiveness of DETERRENT. Comparing with the best results of eight competing methods, in terms of F1 Score, DETERRENT outperforms all methods by at least 4.78% on the diabetes dataset and 12.79% on cancer dataset.
为了提供准确且可解释的错误信息检测,考虑辅助来源(例如社会背景和知识库)通常是很有用的。现有的方法将用户参与度等社会背景作为补充信息来提高检测性能并得出解释。然而,由于缺乏足够的专业知识,用户很少对医疗保健信息做出回应,这使得这些方法不太适用。在这项工作中,为了解决这些缺陷,我们提出了一种新颖的知识引导图注意力网络,以便更好地检测健康错误信息。我们的方案名为DETERRENT,它通过在网络中传播信息来利用医学知识图谱中的附加信息,整合了医学知识图谱和文章 - 实体二分图,并通过知识路径传播节点嵌入。此外,应用了一种注意力机制来计算实体对每篇文章的重要性,并将知识引导的文章嵌入用于错误信息检测。DETERRENT解决了医疗保健领域中社会背景的局限性,并能够为检测结果提供有用的解释。使用两个真实世界数据集进行的实证验证证明了DETERRENT的有效性。与八种竞争方法的最佳结果相比,在F1分数方面,DETERRENT在糖尿病数据集上比所有方法至少高出4.78%,在癌症数据集上高出12.79%。
参考文献(43)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Lee, Dongwon
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓