喵ID:VBxNTP免责声明

Geometric dynamic recrystallization of austenitic stainless steel through linear plane-strain machining

基本信息

DOI:
10.1080/14786435.2020.1725680
发表时间:
2020-02
影响因子:
1.6
通讯作者:
Y. Idell;J. Wiezorek;G. Facco;A. Kulovits;M. Shankar
中科院分区:
材料科学3区
文献类型:
--
作者: Y. Idell;J. Wiezorek;G. Facco;A. Kulovits;M. Shankar研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

ABSTRACT Type 316L austenitic stainless steel was severely plastically deformed at room temperature using linear plane-strain machining in a single pass that imparted shear strains up to 2.2 at strain rates up to 2 × 103 s−1. The resulting microstructures exhibited significant grain size refinement and improved mechanical strength where geometric dynamic recrystallization was identified as the primary microstructural recrystallization mechanism active at high strain rates. This mechanism is rarely observed in low to medium stacking fault energy materials. The critical stress required for twin initiation is raised by the combined effects of refined grain size and the increase in stacking fault energy due to the adiabatic heating of the chip, thus permitting geometric dynamic recrystallization. The suppression of martensite formation was observed and is correlated to the significant adiabatic heating and mechanical stabilisation of the austenitic stainless steel. A gradient of the amount of strain induced martensite formed from the surface towards the interior of the chip. As the strain rate is increased from 4 × 102 s−1–2 × 103 s−1, a grain morphology change was observed from a population of grains with a high fraction of irregular shaped grains to one dominated by elongated grain shapes with a microstructure characterised by an enhanced density of intragranular sub-cell structure, serrated grain boundaries, and no observable twins. As strain rates were increased, the combination of reduction in strain induced martensite and non-uniform intragranular strain led to grain softening where a Hall-Petch relationship was observed with a negative strengthening coefficient of −0.08 MPa m1/2.
摘要:316L型奥氏体不锈钢在室温下通过单次线性平面应变加工进行了剧烈塑性变形,在高达2×10³ s⁻¹的应变速率下施加了高达2.2的剪切应变。所得微观结构显示出显著的晶粒细化和力学强度提高,其中几何动态再结晶被确定为在高应变速率下起作用的主要微观结构再结晶机制。这种机制在低到中等层错能材料中很少被观察到。由于切屑的绝热加热,细化的晶粒尺寸和层错能的增加共同作用提高了孪晶形核所需的临界应力,从而允许几何动态再结晶。观察到马氏体形成受到抑制,这与奥氏体不锈钢的显著绝热加热和力学稳定性相关。从切屑表面到内部形成的应变诱发马氏体量存在梯度。当应变速率从4×10² s⁻¹增加到2×10³ s⁻¹时,观察到晶粒形态从具有高比例不规则形状晶粒的群体转变为以拉长晶粒形状为主的群体,其微观结构的特征是晶内亚晶胞结构密度增加、晶界呈锯齿状且没有可观察到的孪晶。随着应变速率的增加,应变诱发马氏体的减少和晶内不均匀应变的共同作用导致晶粒软化,其中观察到霍尔 - 佩奇关系,强化系数为 -0.08 MPa·m¹/²。
参考文献(91)
被引文献(2)

数据更新时间:{{ references.updateTime }}

关联基金

Collaborative Research: Using Boundaries to Create and Control Pathways for Photomechanical Actuation
批准号:
1635926
批准年份:
2016
资助金额:
20
项目类别:
Standard Grant
Y. Idell;J. Wiezorek;G. Facco;A. Kulovits;M. Shankar
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓