Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction.
涡旋是超流体和超导体中具有量子化的相位环绕数的一种拓扑缺陷。在此,我们利用阻尼投影的戈尔茨坦 - 皮塔耶夫斯基方程研究了旋转的原子 - 分子玻色 - 爱因斯坦凝聚体(BECs)中的结晶(三角形、正方形、蜂窝状)涡旋和无定形涡旋。无定形涡旋是原子 - 分子涡旋相互作用引起的显著偏差的结果。通过将原子 - 分子相互作用从吸引变为排斥,涡旋的构型可以从重叠的原子 - 分子涡旋变为二氧化碳型涡旋,然后变为具有间隙分子涡旋的原子涡旋,最后变为独立分离的涡旋。拉曼频移可以调节原子涡旋与分子涡旋的比例。我们给出了旋转的原子 - 分子BECs中涡旋作为拉曼频移和原子 - 分子相互作用强度的函数的相图。