喵ID:UY1Gpu免责声明

FP4S: Fragment-based Parallel State Recovery for Stateful Stream Applications

基本信息

DOI:
10.1109/ipdps47924.2020.00116
发表时间:
2020-05
期刊:
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
影响因子:
--
通讯作者:
Pinchao Liu;Hailu Xu;D. D. Silva-D.;Qingyang Wang;Sarker Tanzir Ahmed;Liting Hu
中科院分区:
其他
文献类型:
--
作者: Pinchao Liu;Hailu Xu;D. D. Silva-D.;Qingyang Wang;Sarker Tanzir Ahmed;Liting Hu研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Streaming computations are by nature long-running. They run in highly dynamic distributed environments where many stream operators may leave or fail at the same time. Most of them are stateful, in which stream operators need to store and maintain large-sized state in memory, resulting in expensive time and space costs to recover them. The state-of-the-art stream processing systems offer failure recovery mainly through three approaches: replication recovery, checkpointing recovery, and DStream-based lineage recovery, which are either slow, resource-expensive or fail to handle many simultaneous failures.We present FP4S, a novel fragment-based parallel state recovery mechanism that can handle many simultaneous failures for a large number of concurrently running stream applications. The novelty of FP4S is that we organize all the application’s operators into a distributed hash table (DHT) based consistent ring to associate each operator with a unique set of neighbors. Then we divide each operator’s in-memory state into many fragments and periodically save them in each node’s neighbors, ensuring that different sets of available fragments can reconstruct lost state in parallel. This approach makes this failure recovery mechanism extremely scalable, and allows it to tolerate many simultaneous operator failures. We apply FP4S on Apache Storm and evaluate it using large-scale real-world experiments, which demonstrate its scalability, efficiency, and fast failure recovery features. When compared to the state-of-the-art solutions (Apache Storm), FP4S reduces 37.8% latency of state recovery and saves more than half of the hardware costs. It can scale to many simultaneous failures and successfully recover the states when up to 66.6% of states fail or get lost.
流计算本质上是长期运行的。它们在高度动态的分布式环境中运行,许多流运算符可能同时离开或失败。它们中的大多数都是有状态的,流运算符需要在内存中存储和维护大容量的状态,从而导致恢复它们需要昂贵的时间和空间成本。最先进的流处理系统主要通过三种方法提供故障恢复:复制恢复、检查点恢复和基于 DStream 的行恢复,这些方法要么速度慢、资源消耗大,要么无法同时处理多个故障。FP4S 的新颖之处在于,我们将应用程序的所有操作符组织成一个基于分布式哈希表(DHT)的一致环,将每个操作符与一组唯一的邻居关联起来。然后,我们将每个操作员的内存状态划分为多个片段,并定期将其保存在每个节点的邻居中,确保不同的可用片段集可以并行重建丢失的状态。这种方法使故障恢复机制具有极高的可扩展性,可以同时容忍多个操作员故障。我们在 Apache Storm 上应用了 FP4S,并通过大规模实际实验对其进行了评估,结果证明了它的可扩展性、效率和快速故障恢复功能。与最先进的解决方案(Apache Storm)相比,FP4S 减少了 37.8% 的状态恢复延迟,节省了一半以上的硬件成本。它可以同时处理多个故障,并在多达 66.6% 的状态失效或丢失时成功恢复状态。
参考文献(41)
被引文献(7)

数据更新时间:{{ references.updateTime }}

Pinchao Liu;Hailu Xu;D. D. Silva-D.;Qingyang Wang;Sarker Tanzir Ahmed;Liting Hu
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓