喵ID:UATajS免责声明

An Improvement of Matrix-based Clustering Method for Grouping Learners in E-Learning

电子学习中基于矩阵的聚类学习者分组方法的改进

基本信息

DOI:
10.1109/cscwd.2007.4281577
发表时间:
2007
期刊:
International Conference on Computer Supported Cooperative Work in Design
影响因子:
--
通讯作者:
Qi Sui
中科院分区:
文献类型:
--
作者: Kun Zhang;Li;Haiyang Wang;Qi Sui研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Clustering learners into groups according to the customized features in e-learning environment is an important step to build a personalization learning system. Though clustering e-learners is important for better cooperation between teachers and students in e-learning, it is a challenge job to group learners flexibly and exactly. Since there are already many models for the features which are used for the basis of the clustering methods, this paper proposes an improvement of Matrix-based Clustering Method which preformed efficiently without extra comparison in contrast to k-means clustering algorithm. The improvement of the Matrix-based Clustering Method proposes the concept "Agglomerate Strength" for further cluster cohesion measurement in contrast to the previous Matrix-based Clustering Method in precision. And the comparison experiments between the improvement Matrix-based Clustering Method and the other methods, i.e. the previous Matrix-based Clustering Method and K-means algorithm, are investigated. The results of experiments show that this method is feasible and efficient.
在网络学习环境中,根据定制化特征将学习者聚类成组是构建个性化学习系统的重要步骤。尽管对网络学习者进行聚类对于网络学习中师生更好地合作很重要,但灵活且准确地对学习者进行分组是一项具有挑战性的工作。由于已经有许多用于聚类方法基础的特征模型,本文提出了一种基于矩阵的聚类方法的改进,与k - 均值聚类算法相比,该方法无需额外比较即可高效执行。基于矩阵的聚类方法的改进提出了“凝聚强度”的概念,以便在精度上与之前的基于矩阵的聚类方法相比,进一步测量聚类的内聚性。并且对改进的基于矩阵的聚类方法与其他方法(即之前的基于矩阵的聚类方法和K - 均值算法)进行了对比实验研究。实验结果表明该方法是可行且高效的。
参考文献(0)
被引文献(22)

数据更新时间:{{ references.updateTime }}

Qi Sui
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓