喵ID:TaDJ1i免责声明

Dynamic data‐driven computation method for the number of waiting passengers and waiting time in the urban rail transit network

动态数据驱动的城市轨道交通线网候车乘客数及候车时间计算方法

基本信息

DOI:
10.1049/itr2.12245
发表时间:
2022-07
影响因子:
2.7
通讯作者:
Di Liu
中科院分区:
工程技术4区
文献类型:
--
作者: Yanyan Chen;Tongfei Li;Yan Sun;Jianjun Wu;Xin Guo;Di Liu研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Excess passengers gathering on the urban rail transit platform in a short time brings huge security risks to passengers and the daily operation of urban rail transit. However, the real-time monitoring method of passenger flows, which relies on manual methods, cannot satisfy the requirement of daily operations at the network level anymore. This study proposes a dynamic data-driven computation and monitoring method for the number of waiting passengers on platforms to recognize the operational risk in real-time. For waiting passengers on platforms, the waiting time duration before boarding is also calculated based on a first-come-first-service basis. It can be used to provide real-time information services to passengers and evaluate service quality. Moreover, the proposed methodology relies solely on the AFC data and the train timetable, which makes it easy to implement in the daily operation of any urban rail transit system. Finally, taking the Beijing rail transit network as a case study, the real-time number of waiting passengers on each platform, and the time duration passengers should wait before boarding are calculated dynamically. Meanwhile, the spatio-temporal distribution of passengers’ waiting time and waiting passengers are detailly analyzed based on the method of cluster analysis and the complex network theory.
短期内大量乘客在城市轨道交通站台聚集,给乘客以及城市轨道交通的日常运营带来了巨大的安全风险。然而,目前依赖人工方式的客流实时监测方法,已无法满足网络层面日常运营的需求。本研究提出一种基于动态数据驱动的站台候车乘客数量计算与监测方法,以实时识别运营风险。对于站台候车乘客,还基于先到先服务原则计算其上车前的候车时长。该方法可用于为乘客提供实时信息服务并评估服务质量。此外,所提方法仅依赖自动售检票(AFC)数据和列车时刻表,便于在任何城市轨道交通系统的日常运营中实施。最后,以北京轨道交通网络为例进行研究,动态计算各站台的实时候车乘客数量以及乘客上车前需等待的时长。同时,基于聚类分析方法和复杂网络理论,详细分析乘客候车时间和候车乘客的时空分布情况。
参考文献
被引文献
A quasi-dynamic capacity constrained frequency-based transit assignment model
DOI:
10.1016/j.trb.2008.02.001
发表时间:
2008-12
期刊:
Transportation Research Part B-methodological
影响因子:
6.8
作者:
Jan-Dirk Schmöcker;M. Bell;F. Kurauchi
通讯作者:
Jan-Dirk Schmöcker;M. Bell;F. Kurauchi
Inferring left behind passengers in congested metro systems from automated data
DOI:
10.1016/j.trpro.2017.05.021
发表时间:
2018-09
期刊:
Transportation Research Part C: Emerging Technologies
影响因子:
0
作者:
Yiwen Zhu;H. Koutsopoulos;N. Wilson
通讯作者:
Yiwen Zhu;H. Koutsopoulos;N. Wilson
Estimation of Platform Waiting Time Distribution Considering Service Reliability Based on Smart Card Data and Performance Reports
DOI:
10.3141/2652-04
发表时间:
2017-08
期刊:
Transportation Research Record
影响因子:
1.7
作者:
A. Wahaballa;F. Kurauchi;Toshiyuki Yamamoto;Jan-Dirk Schmöcker
通讯作者:
A. Wahaballa;F. Kurauchi;Toshiyuki Yamamoto;Jan-Dirk Schmöcker
Schedule-based transit assignment model with travel strategies and capacity constraints
DOI:
10.1016/j.trb.2007.11.005
发表时间:
2008-08-01
期刊:
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL
影响因子:
6.8
作者:
Hamdouch, Younes;Lawphongpanich, Siriphong
通讯作者:
Lawphongpanich, Siriphong
A stochastic congested strategy-based transit assignment model with hard capacity constraints
DOI:
10.1016/j.trpro.2018.12.196
发表时间:
2019
期刊:
Transportation Research Procedia
影响因子:
0
作者:
E. Codina;Francisca Rosell
通讯作者:
E. Codina;Francisca Rosell

数据更新时间:{{ references.updateTime }}

关联基金

考虑合乘出行的交通系统流量时空分布与合乘定价研究
批准号:
71901007
批准年份:
2019
资助金额:
17.0
项目类别:
青年科学基金项目
Di Liu
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓