喵ID:TY8lxC免责声明

Dominant spatio-temporal modulations and energy tracking in videos: Application to interest point detection for action recognition

视频中的主要时空调制和能量跟踪:应用于动作识别的兴趣点检测

基本信息

DOI:
--
发表时间:
2012
期刊:
2012 19th IEEE International Conference on Image Processing
影响因子:
--
通讯作者:
D. Dimitriadis
中科院分区:
文献类型:
--
作者: Christos Georgakis;P. Maragos;Georgios Evangelopoulos;D. Dimitriadis研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The presence of multiband amplitude and frequency modulations (AM-FM) in wideband signals, such as textured images or speech, has led to the development of efficient multicomponent modulation models for low-level image and sound analysis. Moreover, compact yet descriptive representations have emerged by tracking, through non-linear energy operators, the dominant model components across time, space or frequency. In this paper, we propose a generalization of such approaches in the 3D spatio-temporal domain and explore the potential of incorporating the Dominant Component Analysis scheme for interest point detection and human action recognition in videos. Within this framework, actions are implicitly considered as manifestations of spatio-temporal oscillations in the dynamic visual stream. Multiband filtering and energy operators are applied to track the source energy in both spatial and temporal frequency bands. A new measure for extracting keypoint locations is formulated as the temporal dominant energy computed over the spatial dominant components, in terms of their modulation energy, of input video frames. Theoretical formulation is supported by evaluation and comparisons in human action classification, which demonstrate the potential of the proposed spatio-temporal detector.
宽带信号(如纹理图像或语音)中多频带幅度和频率调制(AM - FM)的存在,促使了用于低级图像和声音分析的高效多分量调制模型的发展。此外,通过非线性能量算子在时间、空间或频率上跟踪主要模型分量,出现了简洁而具有描述性的表示形式。在本文中,我们提出在三维时空域对这类方法进行推广,并探索将主成分分析方案用于视频中的兴趣点检测和人体动作识别的潜力。在此框架内,动作被隐含地视为动态视觉流中时空振荡的表现形式。应用多频带滤波和能量算子来跟踪空间和时间频带上的源能量。一种提取关键点位置的新方法被表述为:根据输入视频帧的调制能量,在空间主成分上计算的时间主能量。在人体动作分类中的评估和比较支持了理论公式,这证明了所提出的时空探测器的潜力。
参考文献(1)
被引文献(4)
Recognising action as clouds of space-time interest points
DOI:
10.1109/cvpr.2009.5206779
发表时间:
2009-06
期刊:
2009 IEEE Conference on Computer Vision and Pattern Recognition
影响因子:
0
作者:
Matteo Bregonzio;S. Gong;T. Xiang
通讯作者:
Matteo Bregonzio;S. Gong;T. Xiang

数据更新时间:{{ references.updateTime }}

D. Dimitriadis
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓