喵ID:TVb7h7免责声明

Reeb Graphs: Approximation and Persistence

Reeb 图:近似和持久性

基本信息

DOI:
10.1145/1998196.1998230
发表时间:
2011
影响因子:
0.8
通讯作者:
Yusu Wang
中科院分区:
数学3区
文献类型:
--
作者: T. Dey;Yusu Wang研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Given a continuous function f:X→ℝ on a topological space X, its level setf−1(a) changes continuously as the real value a changes. Consequently, the connected components in the level sets appear, disappear, split and merge. The Reeb graph of f summarizes this information into a graph structure. Previous work on Reeb graph mainly focused on its efficient computation. In this paper, we initiate the study of two important aspects of the Reeb graph, which can facilitate its broader applications in shape and data analysis. The first one is the approximation of the Reeb graph of a function on a smooth compact manifold M without boundary. The approximation is computed from a set of points P sampled from M. By leveraging a relation between the Reeb graph and the so-called vertical homology group, as well as between cycles in M and in a Rips complex constructed from P, we compute the H1-homology of the Reeb graph from P. It takes O(nlogn) expected time, where n is the size of the 2-skeleton of the Rips complex. As a by-product, when M is an orientable 2-manifold, we also obtain an efficient near-linear time (expected) algorithm for computing the rank of H1(M) from point data. The best-known previous algorithm for this problem takes O(n3) time for point data. The second aspect concerns the definition and computation of the persistent Reeb graph homology for a sequence of Reeb graphs defined on a filtered space. For a piecewise-linear function defined on a filtration of a simplicial complex K, our algorithm computes all persistent H1-homology for the Reeb graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n n_{e}^{3})$\end{document} time, where n is the size of the 2-skeleton and ne is the number of edges in K.
在拓扑空间x上,连续函数f:x→selef -1(a)随着实际值的变化而不断变化。促进其形状和数据分析的更广泛的应用。以o(nlogn)为预期的时间,其中n是RIPS复合物的2个骨骼的大小,当M是一个有效的2个manifold时,我们还可以获得一个有效的接近线性时间(预期)算法,以计算以前的algorith section time op poins op time op-n3。 EB图同源性的REEB图序列在过滤空间上定义了在简单复合物K的过滤下定义的分段线性功能,我们的算法计算\ documentclass [12pt] {minimal} ymb} \ usepackage {amsbsy} \ usepackage {mathrsfs} \ usepackage {upgreek} \ setLength {\ oddSidemargin} { - 69pt} { - 69pt} \ begin n_ {e}^{3})$ \ end {document}时间,其中n是2-skeleton的大小,ne是k中的边数。
参考文献(0)
被引文献(67)

数据更新时间:{{ references.updateTime }}

Yusu Wang
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓