喵ID:SiaHsa免责声明

Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification

基本信息

DOI:
10.1007/s11306-014-0676-4
发表时间:
2015-02-01
期刊:
影响因子:
3.6
通讯作者:
Wishart, David
中科院分区:
医学3区
文献类型:
Article
作者: Allen, Felicity;Greiner, Russ;Wishart, David研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Electrospray tandem mass spectrometry (ESI-MS/MS) is commonly used in high throughput metabolomics. One of the key obstacles to the effective use of this technology is the difficulty in interpreting measured spectra to accurately and efficiently identify metabolites. Traditional methods for automated metabolite identification compare the target MS or MS/MS spectrum to the spectra in a reference database, ranking candidates based on the closeness of the match. However the limited coverage of available databases has led to an interest in computational methods for predicting reference MS/MS spectra from chemical structures. This work proposes a probabilistic generative model for the MS/MS fragmentation process, which we call competitive fragmentation modeling (CFM), and a machine learning approach for learning parameters for this model from MS/MS data. We show that CFM can be used in both a MS/MS spectrum prediction task (ie, predicting the mass spectrum from a chemical structure), and in a putative metabolite identification task (ranking possible structures for a target MS/MS spectrum). In the MS/MS spectrum prediction task, CFM shows significantly improved performance when compared to a full enumeration of all peaks corresponding to substructures of the molecule. In the metabolite identification task, CFM obtains substantially better rankings for the correct candidate than existing methods (MetFrag and FingerID) on tripeptide and metabolite data, when querying PubChem or KEGG for candidate structures of similar mass.
电喷雾串联质谱(ESI - MS/MS)常用于高通量代谢组学。有效使用该技术的关键障碍之一是难以解释测量的光谱,从而准确且高效地识别代谢物。用于自动代谢物识别的传统方法是将目标MS或MS/MS光谱与参考数据库中的光谱进行比较,并根据匹配的接近程度对候选物进行排序。然而,现有数据库的有限覆盖范围导致人们对从化学结构预测参考MS/MS光谱的计算方法产生了兴趣。这项工作提出了一种用于MS/MS裂解过程的概率生成模型,我们称之为竞争裂解建模(CFM),以及一种从MS/MS数据中学习该模型参数的机器学习方法。我们表明,CFM可用于MS/MS光谱预测任务(即从化学结构预测质谱)以及假定代谢物识别任务(对目标MS/MS光谱的可能结构进行排序)。在MS/MS光谱预测任务中,与分子子结构对应的所有峰的完全枚举相比,CFM显示出显著提高的性能。在代谢物识别任务中,当在PubChem或KEGG中查询质量相似的候选结构时,对于三肽和代谢物数据,CFM为正确候选物获得的排名比现有方法(MetFrag和FingerID)要好得多。
参考文献(42)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Wishart, David
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓