喵ID:RlHE3C免责声明

基于长短时记忆网络-纵横交叉算法的含高比例新能源电力市场日前电价预测

基本信息

DOI:
10.13335/j.1000-3673.pst.2021.1056
发表时间:
2022
期刊:
电网技术
影响因子:
--
通讯作者:
孟安波
中科院分区:
其他
文献类型:
--
作者: 殷豪;丁伟锋;陈顺;张铮;曾琮;孟安波研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Accurate day-ahead electricity price prediction can assist power market participants in making rational decisions. With a high proportion of new energy being integrated into the power system, the difficulty of day-ahead electricity price prediction is continuously increasing. In order to improve the prediction accuracy of day-ahead electricity price in a power market with a high proportion of new energy, a day-ahead electricity price prediction model based on singular spectrum analysis (SSA) and crisscross optimization (CSO) to optimize the long short - term memory network (LSTM) is proposed. Firstly, SSA is used to decompose the original data into a trend sequence, a periodic sequence and a residual sequence. Secondly, an LSTM multi - step prediction model is established for each sub - sequence. Aiming at the problem that the parameters of the fully connected output layer of LSTM are prone to fall into local optima, a strategy of secondary training of LSTM is proposed. After the LSTM model is trained well, the CSO algorithm is used to fine - tune the weight coefficients and biases between the fully connected layers. Finally, all the predicted sequences are superimposed to obtain the final electricity price prediction value. Modeling and prediction are carried out using the data of the Nordic Denmark DK1 power market, and the experimental results show that the proposed method can effectively improve the prediction accuracy of day - ahead electricity price.
精准的日前电价预测能够协助电力市场参与者做出合理的决策。随着高比例新能源接入电力系统,日前电价的预测难度不断加大。为了提升含高比例新能源电力市场日前电价的预测精度,提出了一种基于奇异谱分析(singular spectrum analysis,SSA)和纵横交叉算法(crisscross optimization,CSO)优化长短时记忆网络(long short-term memory,LSTM)的日前电价预测模型。首先,使用SSA将原始数据分解成趋势序列、周期序列和剩余序列;其次,对各子序列建立LSTM多步预测模型,针对LSTM的全连接输出层参数易陷入局部最优的问题,提出了二次训练LSTM策略,在训练好LSTM模型后,使用CSO算法对全连接层间的权系数与偏置进行微调;最后,将所有预测序列进行叠加即得最终的电价预测值。以北欧丹麦DK1电力市场数据进行了建模预测,实验结果表明所提方法能够有效提高日前电价的预测精度。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

面向大规模电网优化调度的纵横交叉群智能优化方法研究
批准号:
61876040
批准年份:
2018
资助金额:
62.0
项目类别:
面上项目
孟安波
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓