喵ID:Ri0AGt免责声明

An Investigation of Unified Memory Access Performance in CUDA.

基本信息

DOI:
10.1109/hpec.2014.7040988
发表时间:
2014-09
期刊:
... IEEE conference on high performance extreme computing. IEEE Conference on High Performance Extreme Computing
影响因子:
--
通讯作者:
Herbordt M
中科院分区:
其他
文献类型:
Journal Article
作者: Landaverde R;Zhang T;Coskun AK;Herbordt M研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Managing memory between the CPU and GPU is a major challenge in GPU computing. A programming model, Unified Memory Access (UMA), has been recently introduced by Nvidia to simplify the complexities of memory management while claiming good overall performance. In this paper, we investigate this programming model and evaluate its performance and programming model simplifications based on our experimental results. We find that beyond on-demand data transfers to the CPU, the GPU is also able to request subsets of data it requires on demand. This feature allows UMA to outperform full data transfer methods for certain parallel applications and small data sizes. We also find, however, that for the majority of applications and memory access patterns, the performance overheads associated with UMA are significant, while the simplifications to the programming model restrict flexibility for adding future optimizations.
在GPU计算中,管理CPU和GPU之间的内存是一项重大挑战。英伟达最近推出了一种编程模型——统一内存访问(UMA),旨在简化内存管理的复杂性,同时声称具有良好的整体性能。在本文中,我们对该编程模型进行了研究,并根据实验结果评估了其性能以及编程模型的简化情况。我们发现,除了按需向CPU传输数据外,GPU还能够按需请求所需数据的子集。这一特性使得UMA在某些并行应用和小数据量的情况下优于完整的数据传输方法。然而,我们还发现,对于大多数应用和内存访问模式,与UMA相关的性能开销是显著的,而且编程模型的简化限制了未来添加优化的灵活性。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

GPU Accelerated Protein Docking Software with Flexible Refinement
批准号:
8394398
批准年份:
2012
资助金额:
10.49
项目类别:
Herbordt M
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓