喵ID:R7wT7h免责声明

RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training

RobustState:通过噪声感知变分训练提高量子态准备的保真度

基本信息

DOI:
--
发表时间:
2023
期刊:
arXiv.org
影响因子:
--
通讯作者:
Song Han
中科院分区:
文献类型:
--
作者: Hanrui Wang;Yilian Liu;Pengyu Liu;Jiaqi Gu;Zi;Zhiding Liang;Jinglei Cheng;Yongshan Ding;Xuehai Qian;Yiyu Shi;David Z. Pan;Frederic T. Chong;Song Han研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iteratively tunes ansatz parameters to approximate target state. VQSP is particularly apt for Noisy-Intermediate Scale Quantum (NISQ) machines due to its shorter circuits. However, achieving noise-robust parameter optimization still remains challenging. We present RobustState, a novel VQSP training methodology that combines high robustness with high training efficiency. The core idea involves utilizing measurement outcomes from real machines to perform back-propagation through classical simulators, thus incorporating real quantum noise into gradient calculations. RobustState serves as a versatile, plug-and-play technique applicable for training parameters from scratch or fine-tuning existing parameters to enhance fidelity on target machines. It is adaptable to various ansatzes at both gate and pulse levels and can even benefit other variational algorithms, such as variational unitary synthesis. Comprehensive evaluation of RobustState on state preparation tasks for 4 distinct quantum algorithms using 10 real quantum machines demonstrates a coherent error reduction of up to 7.1 $\times$ and state fidelity improvement of up to 96\% and 81\% for 4-Q and 5-Q states, respectively. On average, RobustState improves fidelity by 50\% and 72\% for 4-Q and 5-Q states compared to baseline approaches.
量子态制备是量子计算中的关键亚例程,涉及从初始化量子位生成目标量子状态。任意状态制备算法可以广泛分为算术分解(AD)和变分量子状态制备(VQSP)。 AD采用预定义的程序将目标状态分解为一系列大门,而VQSP迭代调节ANSATZ参数近似于目标状态。 VQSP特别适合嘈杂的中间尺度量子(NISQ)机器,这是由于其较短的电路。但是,实现噪声射击参数优化仍然具有挑战性。我们提出了Robustate,这是一种新型的VQSP培训方法,将高鲁棒性与高训练效率相结合。核心思想涉及利用真实机器的测量结果通过经典模拟器执行反向传播,从而将实际量子噪声纳入梯度计算中。 RobustState用作一种用于训练参数或微调现有参数的多功能插件技术,以增强目标机器上的保真度。它适用于栅极和脉冲水平的各种Ansatzes,甚至可以使其他变化算法(例如变化统一合成)受益。使用10台实际量子机的4种不同量子算法对国家准备任务进行鲁棒状态的全面评估,这表明,对于4-Q和4-Q,最高7.1 $ \ times $的连贯误差降低了7.1 $ \ times $,最高为96 \%和81 \%分别为5-Q州。与基线方法相比,4-Q和5-Q状态的鲁棒状态平均提高了50 \%和72 \%。
参考文献(18)
被引文献(5)
Hidden Inverses: Coherent Error Cancellation at the Circuit Level
DOI:
10.1103/physrevapplied.17.034074
发表时间:
2021-04
期刊:
Physical Review Applied
影响因子:
4.6
作者:
Bichen Zhang;Swarnadeep Majumder;Pak Hong Leung;S. Crain;Ye Wang;Chao Fang;D. Debroy;Jungsang Kim;K. Brown
通讯作者:
Bichen Zhang;Swarnadeep Majumder;Pak Hong Leung;S. Crain;Ye Wang;Chao Fang;D. Debroy;Jungsang Kim;K. Brown
QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits
DOI:
10.1109/hpca53966.2022.00057
发表时间:
2021-07
期刊:
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
影响因子:
0
作者:
Hanrui Wang;Yongshan Ding;Jiaqi Gu;Yujun Lin;D. Pan;F. Chong;Song Han
通讯作者:
Hanrui Wang;Yongshan Ding;Jiaqi Gu;Yujun Lin;D. Pan;F. Chong;Song Han
TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture
DOI:
10.1109/hpca51647.2021.00023
发表时间:
2020-10
期刊:
2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
影响因子:
0
作者:
Xin-Chuan Wu;D. Debroy;Yongshan Ding;Jonathan M. Baker;Y. Alexeev;K. Brown;F. Chong
通讯作者:
Xin-Chuan Wu;D. Debroy;Yongshan Ding;Jonathan M. Baker;Y. Alexeev;K. Brown;F. Chong
VAQEM: A Variational Approach to Quantum Error Mitigation
DOI:
10.1109/hpca53966.2022.00029
发表时间:
2021-12
期刊:
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
影响因子:
0
作者:
Gokul Subramanian Ravi;Kaitlin N. Smith;P. Gokhale;A. Mari;N. Earnest;Ali Javadi-Abhari;F. Chong
通讯作者:
Gokul Subramanian Ravi;Kaitlin N. Smith;P. Gokhale;A. Mari;N. Earnest;Ali Javadi-Abhari;F. Chong
QuantumNAT: quantum noise-aware training with noise injection, quantization and normalization
DOI:
10.1145/3489517.3530400
发表时间:
2021-10
期刊:
Proceedings of the 59th ACM/IEEE Design Automation Conference
影响因子:
0
作者:
Hanrui Wang;Jiaqi Gu;Yongshan Ding;Zi-Chen Li;F. Chong;D. Pan;Song Han
通讯作者:
Hanrui Wang;Jiaqi Gu;Yongshan Ding;Zi-Chen Li;F. Chong;D. Pan;Song Han

数据更新时间:{{ references.updateTime }}

Song Han
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓