喵ID:QqNp7Y免责声明

Traceable Secret Sharing: Strong Security and Efficient Constructions

可追溯的秘密共享:强安全、高效构建

基本信息

DOI:
10.1007/978-3-031-57722-2_14
发表时间:
2024
期刊:
IACR Cryptol. ePrint Arch.
影响因子:
--
通讯作者:
Lior Rotem
中科院分区:
文献类型:
--
作者: Dan Boneh;Aditi Partap;Lior Rotem研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

. Suppose Alice uses a t -out-of- n secret sharing to store her secret key on n servers. Her secret key is protected as long as t of them do not collude. However, what if a less-than-t subset of the servers decides to offer the shares they have for sale? In this case, Alice should be able to hold them accountable, or else nothing prevents them from selling her shares. With this motivation in mind, Goyal, Song, and Srinivasan (CRYPTO 21) introduced the concept of traceable secret sharing . In such schemes, it is possible to provably trace the leaked secret shares back to the servers who leaked them. Goyal et al. presented the first construction of a traceable secret sharing scheme. However, secret shares in their construction are quadratic in the secret size, and their tracing algorithm is quite involved as it relies on Goldreich-Levin decoding. In this work, we put forth new definitions and practical constructions for traceable secret sharing. In our model, some f < t servers output a reconstruction box R that may arbitrarily depend on their shares. Given additional t − f shares, R reconstructs and outputs the secret. The task is to trace R back to the corrupted servers given black-box access to R . Unlike Goyal et al., we do not assume that the tracing algorithm has any information on how the corrupted servers constructed R from the shares in their possession. We then present two very efficient constructions of traceable secret sharing based on two classic secret sharing schemes. In both of our schemes, shares are only twice as large as the secret, improving over the quadratic overhead of Goyal et al. Our first scheme is obtained by presenting a new practical tracing algorithm for the widely-used Shamir secret sharing scheme. Our second construction is based on an extension of Blakley’s secret sharing scheme. Tracing in this scheme is optimally efficient, and requires just one successful query to R . We believe that our constructions are an important step towards bringing traceable secret-sharing schemes to practice. This work also raises several interesting open problems that we describe in the paper.
假设爱丽丝使用一个(n,t)门限秘密共享方案将她的密钥存储在n个服务器上。只要其中t个服务器不勾结,她的密钥就是受保护的。然而,如果少于t个服务器的子集决定出售它们所拥有的份额会怎样呢?在这种情况下,爱丽丝应该能够追究它们的责任,否则就没有什么能阻止它们出售她的份额。基于这种动机,戈亚尔、宋和斯里尼瓦桑(密码学2021)引入了可追踪秘密共享的概念。在这样的方案中,可以有根据地将泄露的秘密份额追溯到泄露它们的服务器。戈亚尔等人提出了可追踪秘密共享方案的第一个构造。然而,他们构造中的秘密份额在秘密大小上是二次的,并且他们的追踪算法相当复杂,因为它依赖于戈德里奇 - 莱文解码。在这项工作中,我们提出了可追踪秘密共享的新定义和实用构造。在我们的模型中,一些f < t的服务器输出一个重构盒R,它可能任意地依赖于它们的份额。给定另外的t - f个份额,R重构并输出秘密。任务是在对R进行黑盒访问的情况下将R追溯到被破坏的服务器。与戈亚尔等人不同,我们不假设追踪算法拥有关于被破坏的服务器如何从它们所拥有的份额构造R的任何信息。然后我们基于两个经典的秘密共享方案提出了两个非常高效的可追踪秘密共享构造。在我们的两个方案中,份额仅为秘密的两倍大,相比戈亚尔等人的二次开销有所改进。我们的第一个方案是通过为广泛使用的沙米尔秘密共享方案提出一种新的实用追踪算法而得到的。我们的第二个构造基于布莱克利秘密共享方案的一个扩展。这个方案中的追踪是最优高效的,只需要对R进行一次成功查询。我们相信我们的构造是将可追踪秘密共享方案付诸实践的重要一步。这项工作还提出了几个我们在论文中描述的有趣的开放问题。
参考文献(2)
被引文献(1)
HOW TO SHARE A SECRET
DOI:
10.1145/359168.359176
发表时间:
1979-01-01
期刊:
COMMUNICATIONS OF THE ACM
影响因子:
22.7
作者:
SHAMIR, A
通讯作者:
SHAMIR, A

数据更新时间:{{ references.updateTime }}

Lior Rotem
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓