喵ID:Qq0jrY免责声明

The Communication Complexity of Optimization

基本信息

DOI:
10.1137/1.9781611975994.106
发表时间:
2019-06
期刊:
ArXiv
影响因子:
--
通讯作者:
S. Vempala;Ruosong Wang;David P. Woodruff
中科院分区:
其他
文献类型:
--
作者: S. Vempala;Ruosong Wang;David P. Woodruff研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We consider the communication complexity of a number of distributed optimization problems. We start with the problem of solving a linear system. Suppose there is a coordinator together with $s$ servers $P_1, \ldots, P_s$, the $i$-th of which holds a subset $A^{(i)} x = b^{(i)}$ of $n_i$ constraints of a linear system in $d$ variables, and the coordinator would like to output $x \in \mathbb{R}^d$ for which $A^{(i)} x = b^{(i)}$ for $i = 1, \ldots, s$. We assume each coefficient of each constraint is specified using $L$ bits. We first resolve the randomized and deterministic communication complexity in the point-to-point model of communication, showing it is $\tilde{\Theta}(d^2L + sd)$ and $\tilde{\Theta}(sd^2L)$, respectively. We obtain similar results for the blackboard model. When there is no solution to the linear system, a natural alternative is to find the solution minimizing the $\ell_p$ loss. While this problem has been studied, we give improved upper or lower bounds for every value of $p \ge 1$. One takeaway message is that sampling and sketching techniques, which are commonly used in earlier work on distributed optimization, are neither optimal in the dependence on $d$ nor on the dependence on the approximation $\epsilon$, thus motivating new techniques from optimization to solve these problems. Towards this end, we consider the communication complexity of optimization tasks which generalize linear systems. For linear programming, we first resolve the communication complexity when $d$ is constant, showing it is $\tilde{\Theta}(sL)$ in the point-to-point model. For general $d$ and in the point-to-point model, we show an $\tilde{O}(sd^3 L)$ upper bound and an $\tilde{\Omega}(d^2 L + sd)$ lower bound. We also show if one perturbs the coefficients randomly by numbers as small as $2^{-\Theta(L)}$, then the upper bound is $\tilde{O}(sd^2 L) + \textrm{poly}(dL)$.
我们考虑了一些分布式优化问题的通信复杂性。我们从求解线性系统的问题开始。假设有一个协调器和$s$服务器$P_1, \ldots, P_s$,其中$i$ -th持有$d$变量中$n_i$约束的一个子集$A^{(i)} x = b^{(i)}$,并且协调器想要输出$x \in \mathbb{R}^d$为$A^{(i)} x = b^{(i)}$为$i = 1, \ldots, s$。我们假设每个约束的每个系数都使用$L$位来指定。我们首先解决了通信点对点模型中的随机化和确定性通信复杂度,分别为$\tilde{\Theta}(d^2L + sd)$和$\tilde{\Theta}(sd^2L)$。对于黑板模型,我们得到了类似的结果。当线性系统没有解时,一个自然的替代方法是找到最小化$\ell_p$损失的解。在研究这个问题的同时,我们给出了改进的$p \ge 1$值的上界或下界。一个重要的信息是,在早期的分布式优化工作中通常使用的采样和素描技术,在依赖$d$和依赖近似$\epsilon$时都不是最优的,因此激发了从优化到解决这些问题的新技术。为此,我们考虑了广义线性系统的优化任务的通信复杂性。对于线性规划,我们首先求解$d$为常数时的通信复杂度,表明它在点对点模型中为$\tilde{\Theta}(sL)$。对于一般的$d$和点到点模型,我们给出了一个$\tilde{O}(sd^3 L)$上界和一个$\tilde{\Omega}(d^2 L + sd)$下界。我们还表明,如果用小到$2^{-\Theta(L)}$的数字随机扰动系数,则上界为$\tilde{O}(sd^2 L) + \textrm{poly}(dL)$。
参考文献
被引文献

数据更新时间:{{ references.updateTime }}

关联基金

AF:Small: Fundamental High-Dimensional Algorithms
批准号:
1717349
批准年份:
2017
资助金额:
40
项目类别:
Standard Grant
S. Vempala;Ruosong Wang;David P. Woodruff
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓