喵ID:Qq0jrY免责声明

The Communication Complexity of Optimization

基本信息

DOI:
10.1137/1.9781611975994.106
发表时间:
2019-06
期刊:
ArXiv
影响因子:
--
通讯作者:
S. Vempala;Ruosong Wang;David P. Woodruff
中科院分区:
其他
文献类型:
--
作者: S. Vempala;Ruosong Wang;David P. Woodruff研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We consider the communication complexity of a number of distributed optimization problems. We start with the problem of solving a linear system. Suppose there is a coordinator together with $s$ servers $P_1, \ldots, P_s$, the $i$-th of which holds a subset $A^{(i)} x = b^{(i)}$ of $n_i$ constraints of a linear system in $d$ variables, and the coordinator would like to output $x \in \mathbb{R}^d$ for which $A^{(i)} x = b^{(i)}$ for $i = 1, \ldots, s$. We assume each coefficient of each constraint is specified using $L$ bits. We first resolve the randomized and deterministic communication complexity in the point-to-point model of communication, showing it is $\tilde{\Theta}(d^2L + sd)$ and $\tilde{\Theta}(sd^2L)$, respectively. We obtain similar results for the blackboard model. When there is no solution to the linear system, a natural alternative is to find the solution minimizing the $\ell_p$ loss. While this problem has been studied, we give improved upper or lower bounds for every value of $p \ge 1$. One takeaway message is that sampling and sketching techniques, which are commonly used in earlier work on distributed optimization, are neither optimal in the dependence on $d$ nor on the dependence on the approximation $\epsilon$, thus motivating new techniques from optimization to solve these problems. Towards this end, we consider the communication complexity of optimization tasks which generalize linear systems. For linear programming, we first resolve the communication complexity when $d$ is constant, showing it is $\tilde{\Theta}(sL)$ in the point-to-point model. For general $d$ and in the point-to-point model, we show an $\tilde{O}(sd^3 L)$ upper bound and an $\tilde{\Omega}(d^2 L + sd)$ lower bound. We also show if one perturbs the coefficients randomly by numbers as small as $2^{-\Theta(L)}$, then the upper bound is $\tilde{O}(sd^2 L) + \textrm{poly}(dL)$.
我们考虑许多分布式优化问题的通信复杂性。我们从解决线性系统的问题开始。假设有一个协调器与$ s $ servers $ p_1,\ ldots,p_s $,其中$ i $ - the $ i $ th保持子集$ a^{(i)} x = b^{(i)} $ $ n_i $ $ d $变量中的线性系统的约束,并且协调器希望输出$ x \ in \ mathbb {r}^d $ $ a^{(i)} x = b^{(i)} $ for $ i = 1,\ ldots,s $。我们假设使用$ L $位指定每个约束的每个系数。我们首先在通信的点对点模型中解决了随机和确定性的通信复杂性,表明它是$ \ tilde {\ theta}(d^2l + sd)$和$ \ tilde {\ tilde {\ theta}(sd^2l )$,分别。我们为黑板模型获得了类似的结果。当没有解决线性系统的解决方案时,一种自然的选择是找到最小化$ \ ell_p $损失的解决方案。尽管已经研究了此问题,但我们为$ p \ ge 1 $的每个值提供了改进的上限或下限。一个要点消息是,在较早的分布式优化方面通常使用的抽样和草图技术在$ d $的依赖性方面既不是最佳的,也不是对近似值$ \ epsilon $的依赖,从而激发了从优化到优化的新技术解决这些问题。为此,我们考虑了概括线性系统的优化任务的通信复杂性。对于线性编程,我们首先在$ d $是恒定的情况下解决通信复杂性,表明它是点对点模型中的$ \ tilde {\ theta}(sl)$。对于一般$ d $,在点对点模型中,我们显示$ \ tilde {o}(sd^3 l)$上限和$ \ tilde {\ omega}(d^2 l + sd) $下限。我们还表明,是否会随机按数字随机随机,$ 2^{ - \ theta(l)} $,那么上限为$ \ tilde {o}(sd^2 l) + \ textrm {poly}(poly}(poly})( DL)$。
参考文献(81)
被引文献(28)

数据更新时间:{{ references.updateTime }}

关联基金

AF:Small: Fundamental High-Dimensional Algorithms
批准号:
1717349
批准年份:
2017
资助金额:
40
项目类别:
Standard Grant
S. Vempala;Ruosong Wang;David P. Woodruff
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓