喵ID:PVMLYG免责声明

基于随机森林算法的AVO类型判别

基本信息

DOI:
10.11935/j.issn.1673-1506.2020.05.009
发表时间:
2020
期刊:
中国海上油气
影响因子:
--
通讯作者:
张晓琦
中科院分区:
其他
文献类型:
--
作者: 刘浩男;文晓涛;何健;陈芊澍;张晓琦研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

AVO technology can be used for the identification of gas-bearing reservoirs and is of great significance for oil and gas exploration. The artificial identification of reservoir AVO types has relatively large human interference factors, with lower identification accuracy and longer time consumption. Therefore, this paper introduces the random forest algorithm, which uses techniques such as Bootstrap repeated sampling and branch and leaf node splitting to generate a large number of decision tree classifiers, and realizes the discrimination of reservoir AVO types by statistically analyzing the classification results of all decision trees. Firstly, a velocity-density model is established based on the logging data in the work area; secondly, the AVO curve is calculated using the Shuey approximation formula and the fitting polynomial corresponding to this curve is obtained; thirdly, the morphological feature parameters are extracted according to the fitting polynomial and used as the input parameters of the training data set of the random forest algorithm, and the artificial AVO type identification results are used as the output parameters to train and obtain the decision tree classifier; finally, the AVO curve feature parameters of the actual pre-stack seismic data are used as the input parameters, and the reservoir AVO types in the work area are obtained through the random forest decision tree classification and discrimination. It can be seen from the comparison results with the approximate support vector machine algorithm that the two algorithms have similar discrimination results for reservoir AVO types and both have relatively high accuracy. However, in comparison, the random forest algorithm requires fewer characteristic attributes, has stronger generalization ability, and has better universality.
AVO技术可用于含气储层的识别,对油气勘探具有重要意义。人工识别储层AVO类型人为干扰因素较大,识别精度较低且耗时较长。由此,本文引入随机森林算法,利用Bootstrap重复抽样及枝叶节点分裂等技术生成大量决策树分类器,通过统计所有决策树的分类结果实现对储层AVO类型的判别。首先,基于工区内测井数据建立速度密度模型;其次,利用Shuey近似公式计算AVO曲线并获得该曲线对应的拟合多项式;第三,根据拟合多项式提取形态特征参数作为随机森林算法的训练数据集输入参数,将人工AVO类型识别结果作为输出参数,训练并得到决策树分类器;最后,以实际叠前地震数据的AVO曲线特征参数为输入参数,通过随机森林决策树分类判别得到工区内储层AVO类型。通过与近似支持向量机算法的对比结果可以看出,两种算法对储层AVO类型判别结果相近,都具有较高的准确率,但相比之下随机森林算法所需特征属性较少,泛化性较强,具有更好的普适性。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

基于频变信息的流体识别及流体可动性预测
批准号:
41774142
批准年份:
2017
资助金额:
69.0
项目类别:
面上项目
张晓琦
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓